Lee 29
Recall orthogonal projection \vec{v} onto $\operatorname{span}(\vec{u}) \operatorname{proj} \vec{u} \vec{v}=\left(\frac{u \cdot v}{u \cdot u}\right) u$ or onto $\operatorname{col}(A) \operatorname{proj}_{\operatorname{col} A} \vec{v}=A\left(A^{\top} A\right)^{-1} A^{\top} v$

Recall orth. decomp. thu.
\# Projection matrix
Def $A\left(A^{\top} A\right)^{-1} A^{\top}$ is a projection matrix as it sends shh to its projection in $\operatorname{col} A$

Thy Let W be subspace for $\mathbb{R}^{n}, B^{\omega}=\left\{u_{1}, \ldots, u_{k}\right\}$ be orth. basis for $\omega, B^{\omega^{1}}=\left\{u_{k+1}, \ldots, u_{n}\right\}$ be orth. basis for W^{1}. Then $B=B^{w} \cup B^{\omega^{1}}=\left\{u_{1}, \ldots, u_{n}\right\}$ is orth. basis for \mathbb{R}^{n}

Proof WTS B orth., spoors \mathbb{R}^{n}, is lin indep.
Let $i \neq j$, then $u_{i} \cdot u_{j}=0$ because

$$
\begin{aligned}
& u_{i}, u_{j} \in B^{w} \Rightarrow u_{i} \cdot u_{j}=0 \\
& u_{i}, u_{j} \in B^{w} \Rightarrow u_{i} \cdot u_{j}=0 \\
& u_{i} \in B^{w}, u_{j} \in B^{w 1} \Rightarrow u_{i} \cdot u_{j}=0
\end{aligned}
$$

B is set of mutually lin indep. non-zero vecs, so B is lin. index.
Let $v \in \mathbb{R}^{n}$. Then $\exists!w \in w, u \in w^{\perp}, v=w+u$.
Then $v=c_{1} u_{1}+\cdots+c_{k} u_{k}+c_{k+1} u_{k+1}+\cdots+c_{n} u_{n}$

$$
\epsilon \operatorname{span}(B)
$$

Thu Suppose $\left\{u_{1}, \ldots, u_{k}\right\}$ an orth. basis for subspace W in \mathbb{R}^{n}, then projection of $v \in \mathbb{R}^{n}$ onto W is

$$
\operatorname{prog}_{w}(v)=\left(\frac{u_{1} \cdot v}{u_{\cdot} \cdot u_{2}}\right) u_{1}+\cdots+\left(\frac{u_{k} \cdot v}{u_{k} \cdot u_{k}}\right) u_{k}
$$

Prefect Know: projw $v \in W$

$$
\Rightarrow \text { projw } v=a_{1} u_{1}+\cdots+a_{k} u_{k}
$$

Also: projwv $=p$ st. $w \cdot(\nu-p)=0 \quad \forall w \in W$.
$\Rightarrow \quad v-P$ is orth. $+\infty W$.
Then $\forall i=1 \ldots k, u_{i} \cdot\left(v-a_{1} u,+\cdots+a_{k} u_{k}\right)=0$

$$
\begin{gathered}
u_{i} \cdot v-u_{i} \cdot\left(a_{1} u_{1}+\cdots+a_{k} u_{k}\right)=0 \\
u_{i} \cdot v-a_{i}\left(u_{i} \cdot u_{i}\right)=0 \\
a_{i}=\frac{u_{i} \cdot v}{u_{i} \cdot u_{i}}
\end{gathered}
$$

\# Orthogonal matrices
Thm If $Q_{m \times n}$ has orthonormal cobs, then $Q^{\top} Q=I_{n}$
Proof
Let $Q=\left[\begin{array}{ccc}1 & & 1 \\ q_{1} & \cdots & q_{n} \\ 1 & & 1\end{array}\right]$
Then $Q^{\top} Q=\left[\begin{array}{c}-q_{1}- \\ \vdots \\ -q_{n}-\end{array}\right]\left[\begin{array}{ccc}1 & 1 \\ q_{1} & \cdots & q_{n} \\ 1 & 1\end{array}\right]=\left[q_{i} \cdot q_{j}\right]_{i, j}$
But $q_{i} \cdot q_{j}=\left\{\begin{array}{lll}0 & \text { if } \quad i \neq j \\ 1 & \text { if } \quad i=j\end{array}\right.$
So $Q^{\top} Q=\left[\begin{array}{lll}1 & 0 \\ & \ddots & 0 \\ 0 & & 1\end{array}\right]$
Def If $A_{n \times n}$ has orthonormal cols we say A is an orthogonal matrix viz. square matrix with orthonormal cols

$$
\text { Ex. } A=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

The $Q_{\text {nan }}$ is orth. matrix $\Leftrightarrow Q^{\top} Q=I_{n} \Leftrightarrow Q^{\top}=Q^{-1}$
Def A matrix P is a permutation matrix if its cols are standard basis vec for \mathbb{R}^{n} in any order

$$
E_{x} \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Note any permutation matrix is orthogonal
Thu Let $Q_{n \times n}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$, TFAE

1. Q is orth. matrix
2. $\|Q \vec{x}\|=\|\vec{x}\| \quad$ preserves length
3. $(Q \vec{x}) \cdot(Q \vec{y})=\vec{x} \cdot \vec{y} \leftarrow$ preserves dot prod

Proof $(1) \Rightarrow(3) \quad\left(Q_{x}\right) \cdot\left(Q_{y}\right)=\left(Q_{x}\right)^{\top}\left(Q_{y}\right)$

$$
\begin{aligned}
& =x^{\top}\left(Q^{\top} Q\right) y \\
& =x \cdot y
\end{aligned}
$$

$$
\text { Suppose }\left(Q_{x}\right) \cdot\left(Q_{y}\right)=x \cdot y \text {. Let } x=y
$$

$$
\text { Then } \begin{aligned}
\left\|Q_{x}\right\| & =\sqrt{\left(Q_{x}\right) \cdot\left(Q_{x}\right)} \\
& =\sqrt{x \cdot x}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{x \cdot x} \\
& =\|x\|
\end{aligned}
$$

(2) \rightarrow (1) [omit]

