$\operatorname{Lec} 31$

\# Least Square Approximation

Consider: want to solve $A x=b$. Maybe there's no solution ... but we wont some approximate solution.
aka inconstent wont x^{*} s.t. $A x^{*}$ is as close to b as possible.

Thu Best approx theorem: if ω subspace in \mathbb{R}^{n} and $v \in \mathbb{R}^{n}$, then $u \in W$ closest to v is projuv.

Then, to fund x^{*}, we solve $A x^{*}=\operatorname{proj}$ col $(A)^{b}$. Vii. minimise $b-A x^{*}$.
Meanwhile $b-A x^{*} \in(\operatorname{col} \mid A)^{\perp} \Rightarrow b-A x^{*} \in \operatorname{nul}\left(A^{\top}\right)$.
\Rightarrow want $A^{\top}\left(b-A x^{*}\right)=\overrightarrow{0}$
$A^{\top} b-A^{\top} A x^{*}=\overrightarrow{0}$
$A^{\top} b=A^{\top} A x^{*} \leftarrow \begin{gathered}\text { the normal equation for } A x=b \\ \text { always has solution. }\end{gathered}$
or, ... think about error $\left.\begin{array}{rl}\operatorname{err} & =b-A x=\left[\begin{array}{l}z_{1} \\ k_{1} \\ \| \text { err } \|\end{array}\right]=\sqrt{\varepsilon_{1}^{2}+\cdots+\varepsilon_{m}^{2}}\end{array}\right]$
WT minimise

\# Regression application

Suppose we have $\left(x_{i}, y_{i}\right)$ and expect $y_{i}=m x_{i}+b$

$$
\begin{aligned}
& \begin{array}{l|l}
x & y \\
\hline 1 & 1
\end{array} \quad \text { Want } \\
& \text { A b } \\
& \begin{array}{l|l}
3 & 2 \\
2 & 3 \\
3 & 1
\end{array} \\
& m+b=1 \\
& \leadsto\left[\begin{array}{ll}
1 & 1 \\
3 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
3 \\
1
\end{array}\right] \leftarrow \text { inconsisturt, but, still wait } \\
& A^{\top} A=\left[\begin{array}{cc}
23 & 9 \\
9 & 4
\end{array}\right] \longrightarrow \text { Normal eq: } \quad A^{\top} b=A^{\top} A x^{*} \\
& \begin{aligned}
& A^{\top} b=\left[\begin{array}{c}
16 \\
7
\end{array}\right] \quad\left[\begin{array}{c}
16 \\
7
\end{array}\right]=\left[\begin{array}{cc}
23 & 9 \\
9 & 4
\end{array}\right] \\
& \cdots \Rightarrow\left[\begin{array}{c}
m^{*} \\
b^{*}
\end{array}\right]=\left[\begin{array}{c}
1 / 11 \\
17 / 11
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Thm Let $A_{m \times n}, b \in \mathbb{R}^{n}$, then there's at least a least square sol to $A x=b$. Moreover:

1. x^{*} is L.S.S. $\Leftrightarrow A^{\top} A x^{*}=A^{\top} b$
2. If cols of $A \mathrm{lin}$. indep, then x^{*} is unique.

Def If A has lin indep cols $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}$ is the psendoinverse of A.
\Rightarrow If A invertible $\Rightarrow A x=b$ has unique sol $x=A^{-1} b$.
A in indep cols $\Rightarrow A x=b$ has least square sol $x^{*}=A^{+} b$
But if A invertible $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}=A^{-1}\left(A^{\top}\right)^{-1} A^{\top}=A^{\top}$ So $x=x^{*}$ in this case.
\# L.T. as functions

one -to-one infective monomorphism

onto surjective epimorphism

one-to-one and onto bijective isomorphism
$\begin{aligned} T: V & \rightarrow W \\ & L \text { codomain }\end{aligned}$

$$
\operatorname{in}(T)=\{T(v) \mid v \in V\} \leqslant W
$$

$$
L \text { image of } T
$$

$$
\operatorname{ker}(T)=\left\{v \in V \mid T(v)=\overrightarrow{0}_{w}\right\}
$$

$ᄂ$ kernel of T
Then - T infective $\Leftrightarrow \operatorname{ker} T=\vec{O}_{v}$

- T surjective \Leftrightarrow in $T=W$

