Lec 31

Least Square Approximotion

Consider: want to solve Ax = b. Maybe there's no solution ... but we want some approximate solution. Want x* s.t. Ax* is as close to b as possible.

Thm Best approx theorem: if W subspace in R" and VER", then UEW closest to V is projwV.

Then, to find x*, we solve $Ax^* = \operatorname{proj}_{col(A)} b$. Viz. minimise $b - Ax^*$. Meanwhile $b - Ax^* \in (colA)^{\perp} \Rightarrow b - Ax^* \in \operatorname{nul}(A^{\top})$. \Rightarrow want $A^{\top}(b - Ax^*) = \vec{o}$ $A^{\top}b - A^{\top}Ax^* = \vec{o}$ $A^{\top}b = A^{\top}Ax^* \leftarrow \text{the normal equation for } Ax = b$ $a^{\top}b = A^{\top}Ax^* \leftarrow \text{the normal equation for } Ax = b$ $a^{\top}b = A^{\top}Ax^* \leftarrow a^{\top}b = a^{\top}b - a^{\top}b = a^{$

Regression application

Suppose we have (x_i, y_i) and expect $y_i = mx_i + b$ $\frac{x \mid y}{1 \mid} \qquad \text{Want}: \qquad A \qquad b$ $\frac{x \mid y}{1 \mid} \qquad m + b = 1$ $\frac{x \mid y}{2 \mid} \qquad m + b = 2 \qquad \Rightarrow \qquad \begin{bmatrix} 1 & 1 \\ 3 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} \qquad \leftarrow \text{ inconsistent}, \text{ bot still want}$ $\frac{x \mid y}{2 \mid} \qquad = 1 \qquad \Rightarrow \qquad \begin{bmatrix} 1 & 1 \\ 3 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} \qquad \leftarrow \text{ inconsistent}, \text{ bot still want}$ $\frac{x \mid y}{2 \mid} \qquad = 1 \qquad \Rightarrow \qquad = 1 \qquad \qquad = 1 \qquad \Rightarrow \qquad = 1 \qquad \qquad = 1 \qquad \Rightarrow \qquad = 1 \qquad \qquad = 1$ Thm Let Aman, b ∈ R^m, then there's at least a least square sol to Ax=b. Moreover: 1. x* is LSS. A^TAx* = A^Tb 2. If cols of A lin. indep, then x* is unique.

Def If A has lin indep cols

$$A^{+} = (A^{T}A)^{-1}A^{T}$$
 is the pseudoinverse of A

⇒ If A invertible ⇒ A× = b has unique sol × = A⁻¹b.
 A lin indep cols ⇒ A× = b has least square sol ×* = A⁺b
 But if A invertible A⁺ = (A⁺A)⁻¹A⁺ = A⁻¹(A⁺)⁻¹A⁺ = A⁻¹
 So × = ×* in this case.

L.T. as functions

