Lec 33

Recap

Recall for basis $B = 2b_1, ..., b_n in V$ there's unique encoding for veV in terms of basis in $B [v]_B = \begin{bmatrix} c_1 \\ c_n \end{bmatrix} \in \mathbb{R}^n$.

And we can have bijective L.T. CB: V > IR" that sends V IN EV]B

In special case where $V = \mathbb{R}^n$, we have std basis $4 = 2 e_1, \dots, e_n 3$. And so all $\forall x \in \mathbb{R}^n$, $[x]_3 = x$

Consider

 $B = \begin{bmatrix} b_1 \cdots b_n \\ 1 & 1 \end{bmatrix}$. Then $Be_1 = b_1 \cdots \Rightarrow B[x]_B = [x]_d$ for any $x \in \mathbb{R}^n$. $B'[x]_J = [x]_B$

Picking helpful coords Consider generic VS. V and Rⁿ with some basis $B = \frac{2}{2} b_{1,...,bn} B_{-\frac{2}{2}} b_{-\frac{1}{2}} b_{-\frac{1}{2}} b_{-\frac{1}{2}} C_{-\frac{2}{2}} b_{-\frac{1}{2}} b_{-\frac{1}{2}} C_{-\frac{2}{2}} b_{-\frac{1}{2}} c_{-\frac{1}{2}} C_{-\frac{2}{2}} b_{-\frac{1}{2}} c_{-\frac{1}{2}} C_{-\frac{1}$