$\operatorname{Lec} 35$

Alt notation for $C_{B}:[\cdot]_{B}$
\# More complicated V.S. mappings

Notice: $\left[T^{-1}\right]_{B \leftarrow D}=\left[T^{-1}\right]_{B \in C} P_{C \in D}$
Ex. $\quad T: U \rightarrow V$ via $T(\vec{x})=\left[\begin{array}{cc}-1 & 3 \\ 3 & -1\end{array}\right] \vec{x}$

$$
\begin{aligned}
& u=\mathbb{R}^{2} \\
& v=\mathbb{R}^{2}
\end{aligned} \quad B=C=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

$\left[T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)\right]_{B}=\left[\left[\begin{array}{l}2 \\ 2\end{array}\right]\right]_{B}=\left[\begin{array}{l}2 \\ 0\end{array}\right] \quad\left[T\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)\right]_{B}=\left[\left[\begin{array}{c}-4 \\ 4\end{array}\right]\right]_{B}$
So $[T]_{B \in B}=\left[\begin{array}{cc}2 & 0 \\ 0 & -4\end{array}\right] \leftarrow$ Nice diagonal matrix because we chose basis in the eigenspace of $\left[\begin{array}{ccc}-1 & 3 \\ 3 & -1\end{array}\right]$
But also $[T]_{s \leftarrow 1}=\left[\begin{array}{cc}-1 & 3 \\ 3 & -1\end{array}\right]$

$$
\begin{aligned}
& P_{S \leftarrow B}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& P_{B \leftarrow S}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
\end{aligned}
$$

So $[T]_{\delta \leftarrow \delta}=P_{\Delta \leftarrow B}[T]_{B \leftarrow B} P_{B \leftarrow \delta}=\left(P_{B \leftarrow \delta}\right)^{-1}[T]_{B \leftarrow B} P_{B \leftarrow \delta}$ Indeed $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & -4\end{array}\right]\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2\end{array}\right]=\left[\begin{array}{cc}-1 & 3 \\ 3 & -1\end{array}\right]$

Does that mean $[T]_{S \leftarrow S}$ and $[T]_{B \leftarrow B}$ are somehow connected?
Def We say A and B are similar if $\exists P$ s.t. $P^{-1} A P=B$ Viz. they represent same L.T. for basis that could be different. We write $A \sim B$

The Let A, B, C be $n \times n$. Then:

1. $A \sim A$
2. $A \sim B \Leftrightarrow B \sim A$
3. $A \sim B \wedge B \sim C \Rightarrow A \sim C$

Thu Let A, B be $n \times n$ with $A \sim B$. These are true:

1. $\operatorname{det} A=\operatorname{det} B$
2. $\exists A^{-1} \Leftrightarrow \exists B^{-1}$
3. $\operatorname{rank} A=\operatorname{rank} B$
4. A, B have same charastic polynomial $\operatorname{det}(A-\lambda I)$
5. A, B have same evens

Proof for 4

$$
\text { Well } \begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1} A P-\lambda P^{-1} I P\right) \\
& =\operatorname{det}\left(P^{-1}(A P-\lambda I P)\right) \\
& =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}\left(P^{-1} P\right) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

