$\operatorname{Lec} 36$
\# Diagonisability
Def $A_{n \times n}$ is diagonalisable if \exists diagonal matrix $D, \exists P, \exists P^{-1}$, st.

$$
P^{-1} A P=D
$$

$V_{i 2}$. it's similar to some diagonal matrix
Thu An xn dingonalisable $\Leftrightarrow A$ has n lin indep e-vecs In that case
$P^{-1} A P=D \Rightarrow$ cols of P are ervals and entries of D are corresponding e-vals

Proof
Suppose $P^{-1} A P=D$. Bind $\left[\begin{array}{ccc}1 & P_{1} & \cdots \\ P_{1} & \cdots & P_{n} \\ 1 & & 1\end{array}\right]=P,\left[\begin{array}{lll}d_{1} & 0 \\ 0 & & d_{n}\end{array}\right]=D$

$$
\begin{aligned}
& \Rightarrow \quad A P=P D \\
& A\left[\begin{array}{ccc}
p_{1}^{\prime} & \ldots & p_{n}^{\prime} \\
1 & & p_{1}
\end{array}\right]=\left[\begin{array}{ccc}
p_{1}^{\prime} & \ldots & p_{1}^{\prime} \\
1 & \cdots & p_{1}
\end{array}\right]\left[\begin{array}{lll}
d_{1} & 0 \\
0 & 0 & d_{n}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & & 1 \\
A_{p_{1}} & \cdots & A_{p_{n}} \\
1 & & 1
\end{array}\right]=\sum\left[\begin{array}{c}
1 \\
P_{i} \\
1
\end{array}\right]\left[\begin{array}{cccc}
& \cdots \text { olio } & \cdots & 0
\end{array}\right]} \\
& =\sum\left[\begin{array}{llll}
\overrightarrow{0} & \cdots & \vec{o} & d_{i}
\end{array}\left[\begin{array}{ccc}
1 \\
p_{i} \\
1
\end{array}\right] \vec{o} \cdots \cdots \overrightarrow{0}\right] \\
& =\left[\begin{array}{ccc}
1 & & \mid \\
d_{1 p_{1}} & \cdots & d_{n p_{n}} \\
1 & & 1
\end{array}\right]
\end{aligned}
$$

So $A_{p i}=\operatorname{dip}$ for $i \in 1 . . n$
So 1. cols of P are e-vecs of A
2. entries in D are corresponding e-vals

So cols of P form eigenbasis for \mathbb{R}^{n}
Now suppose $\left\{p_{1} . . n\right\}$ is e-basis for A. Viz $A_{p_{i}}=\lambda_{i p_{i}}$
Let $P=\left[\begin{array}{ccc}P_{1} & \ldots & P_{1} \\ 1 & & P_{n}\end{array}\right], \quad D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \\ 0 & \lambda_{n}\end{array}\right]$

Notice the eth col of $P^{-1} A P$ is $P^{-1} A P e_{i}$

$$
\begin{aligned}
& =P^{-1} A_{p_{i}} \\
& =P^{-1} \lambda_{i} p_{i} \\
& =\lambda_{i} p^{-1} p_{i} \\
& =\lambda_{i} e_{i}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
P^{-1} A P & =\left[\begin{array}{lll}
\cdots & \lambda_{i} e_{i} & . .
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \\
0 & \lambda_{n}
\end{array}\right] \\
& =D
\end{aligned}
$$

Obsticles

- If geo multiplicity < algebraic multiplicity, then we don't get diagonalisation
- Complex e-vals?

The If $A_{n \times n}$ with $\lambda_{1 . . k}$ and distinct e-vecs $B_{i}=\left\{v_{i 1}, \ldots, v_{i n_{i}}\right\}$ as basis for $E_{\lambda_{i}}$, then $B=U B_{i}$ is a lin indep set.

Proof

$$
\begin{aligned}
& B=\left\{v_{10}, \ldots, v_{i n,}, \ldots, v_{k_{1}}, \ldots, v_{k n_{k}}\right\} \\
& \text { Suppose } \underbrace{c_{11} v_{11}+\cdots+c_{1 n_{1}} v_{i n_{1}}}_{u_{1} \in E_{\lambda_{1}}}+\cdots+\underbrace{c_{k 1} v_{k_{1}}+\cdots+c_{k n_{k}} v_{k n k}}_{u_{k} \in E_{\lambda_{k}}}=\overrightarrow{0} \\
& u_{1}+\cdots+u_{k}=\overrightarrow{0} \quad \text { for } u_{i} \in E_{\lambda_{i}}
\end{aligned}
$$

If any $v_{i} \neq 0$, we could solve it in terms of others, but we can't as e-vecs from different e-vals are lin indep.

So $c_{11}, \ldots, c_{i n_{i}}=0$, and B is $l i n$ indep.
Thu If Anon with distinct evens $\lambda_{1 . . k}$, TFAE

1. A is diagonaliable
2. $B=U B_{i}$ has n vecs
3. $\forall \lambda_{i}$, its geo multiplicity $=$ algebraic multiplicity

Ex.

$$
\begin{aligned}
& \left.A=\begin{array}{ccc}
{\left[\begin{array}{cc}
1 / 2 & 5 / 4 \\
5 & 1 / 2 \\
0 & -10 \\
0 & 0
\end{array}-2\right.}
\end{array}\right] \quad \text { with } \quad \lambda_{1}=3, \quad \lambda_{2}=-2 \\
& \text { Double root }
\end{aligned} \underbrace{\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right\} \quad B_{2}=\underbrace{\left\{\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\}}_{1}}_{\text {dim }=2}
$$

So $\forall \lambda_{i}$, its geo multiplicity = algebraic multiplicity
So A is diagonahiable
We can take $P=\frac{\left[\begin{array}{ccc}1 & 1 & 2 \\ 2 & -2 & 0 \\ 0 & 0 & 1\end{array}\right],}{D=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]}$
Note this is not the unique way

