Lee 37

Recall: Diagonalisation as special case of similarity
\# Orthogonal diagonalisation of real symmetric matrices - orthonormal basis of e-vecs

Def $A_{n \times n}$ is orthogonally diagonalisable if \exists orth. matrix Q st.

$$
Q^{\top} A Q=D=Q^{-1} A Q \quad \mid \text { recall } Q \text { orth } \Rightarrow Q^{\top}=Q^{-1}
$$

Def A is symmetric if $A=A^{\top}$
Thu If A is orthogonally diagonalisoble, then A is symmetric.
Proof

$$
\begin{aligned}
Q^{\top} A Q & =Q^{-1} A Q=D \\
A & =Q D Q^{-1}=Q D Q^{\top} \\
A^{\top} & =\left(Q^{\top}\right)^{\top} D^{\top} Q^{\top} \\
& =Q D Q^{\top} \\
& =A
\end{aligned}
$$

Ex.

$$
\begin{aligned}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \quad \begin{array}{c}
\text { with } \lambda_{1}=4, \lambda_{2}=1 \\
E_{4}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \quad E_{2}=\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\} \\
\downarrow \text { Gnam.Schmiatt }
\end{array} \\
\left.Q^{\top} A Q^{\top}=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left\{\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
1 \\
-1 / 2
\end{array}\right]\right\}
\end{aligned}
$$

Thm Every real symmetric matrix B orthogonally diagonalisable

* Complex e-val - related to rotation.

Ex $\quad R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad$ Bind $\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(R-\lambda I)=0 \\
&(c-\lambda)^{2}+s^{2}=0 \\
& \lambda^{2}-2 c \lambda+\left(c^{2}+s^{2}\right)=0 \\
& \lambda^{2}-2 c \lambda+1=0 \\
& \lambda=c \pm \sqrt{c^{2}-1} \\
&=\cos \theta \pm \sqrt{\cos ^{2} \theta-1} \\
&=\cos \theta \pm i \sin \theta
\end{aligned}
$$

But then

$$
\begin{aligned}
& A(v+i w)=(\alpha-i \beta)(v+i w) \\
& A v+i A w=(\alpha v+\beta w)+i(-\beta v+\alpha w) \\
& \Rightarrow A v=\alpha v+\beta w, \\
& \\
& A w=-\beta v+\alpha w
\end{aligned}
$$

Claim : $B=\{v, w\}$ is a basis and

$$
\begin{aligned}
& {\left[A_{v}\right]_{B}=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]} \\
& {[A \omega]_{B}=\left[\begin{array}{c}
-\beta \\
\alpha
\end{array}\right]}
\end{aligned}
$$

Then $\left[\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]=\frac{1}{\alpha^{2}+\beta^{2}}\left[\begin{array}{cc}\frac{\alpha}{\alpha^{2}+\beta^{2}} & -\frac{\beta}{\alpha^{2}+\beta^{2}} \\ \frac{\beta}{\alpha^{2}+\beta^{2}} & \frac{\alpha}{\alpha^{2}+\beta^{2}}\end{array}\right]$
Set $\cos \theta=\frac{\alpha}{\alpha^{2}+\beta^{2}}, \sin \theta=\frac{\beta}{\alpha^{2}+\beta^{2}}$
S_{0} this is a rotation matrix.

