$$
21-259
$$

Calculus in Three Dimensions
Spring 2023
At Carnegie Mellon University Notes by Lómenvire Mortecc.

Lee 1

- Syllabus
- Homework
- Late:

$$
24 h-5 \% \text { off }
$$

$$
48 h-10 \% \text { off }
$$

- Textbook (TB) Openstax Calculus Volume 3
- Grading 30% homework 15% midterm $\times 3$ 25% final
* Parametric Equation (T B1.1-1.2)
* Vectors in \mathbb{R}^{d}

*Def: a vector in \mathbb{R}^{d} is a tuple $\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle$ of \mathbb{R}_{s} encoding magnitude aud direction.
Ex. $\langle 1,-1\rangle\rangle$
Ex. Initial $(1,0,2)$
Terminal $(-2,1,3)$
Vec: $\langle-3,1,1\rangle$
\# Vector operations
* Vector addition :

Given vectors $\vec{v}=\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle$

$$
\vec{u}=\left\langle y_{1}, y_{2}, \cdots, y_{d}\right\rangle
$$

their sum $\vec{v}+\vec{u}=\left\langle x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x d+y d\right\rangle$

* Geometric interpretation:

* Scaler multiplication

Giver vector $\vec{v}=\left\langle x_{1}, x_{2}, \ldots, x_{d}\right\rangle \in \mathbb{R}^{d}$
constant $c \in \mathbb{R}$
Then $\quad c \vec{v}=\left\langle c x_{1}, c x_{2}, \ldots, c x_{d}\right\rangle$

Ex. $\vec{u}:=\langle 1,4,-1\rangle, \quad \vec{v}:=\langle 3,0,2\rangle$
$5 \vec{v}-\vec{u}=[\ldots]=\langle 14,-4,11\rangle$
\# Magnitude
Given vector $\vec{v}=\left\langle x_{1}, \ldots, x d\right\rangle$
The magnitude or length of \vec{v} is defined as:
$\|\vec{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}^{2}+\cdots+x_{d}{ }^{2}} \leftarrow \begin{gathered}\text { Comes from pythagorean (?) theorem } \\ \text { repeatedly applying to "reduce" dims }\end{gathered}$
\# Unit vectors and direction
A unit vector in \mathbb{R}^{d} is a vector \vec{u} with $\|\vec{u}\|=1$
In \mathbb{R}^{2}
 anything with distance 1 can be a mit vector.

Note that angle in \mathbb{R}^{2} works too.
Since we can use $\langle\cos \theta, \sin \theta\rangle$ to get the point.

Standard basis vectors in \mathbb{R}^{3} :

$$
\begin{aligned}
& \vec{\imath}=\langle 1,0,0\rangle \\
& \vec{J}=\langle 0,1,0\rangle \\
& \vec{k}=\langle 0.0,1\rangle
\end{aligned}
$$

\# Ex
Suppose
400 mph west motion

Directions:

So:

$$
\begin{aligned}
& \vec{p}=400\langle-1,0\rangle \\
& \vec{\omega}=30\left\langle-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right\rangle
\end{aligned}
$$

Resulting vector:

$$
\vec{p}+\vec{w}=\left\langle-400-\frac{30 \sqrt{2}}{2}, \frac{-30 \sqrt{2}}{2}\right\rangle
$$

Resulting speed:

$$
\|\vec{p}+\vec{w}\|=[\ldots] \approx 421.7
$$

Angle:
$\arctan (\ldots) \approx 28^{\circ}$ south of west

