Lec 2
Standard basis vecs for
$$\mathbb{R}^{d}$$
 with $d > 3$.
 $e_{i} = (1, 0, ..., 0)$
 $e_{i} = (0, ..., 1, ..., 0)$
it coordinate
Dot Product alsa "inner product"
Def: Let $\vec{u} = (\pi_{1}, ..., \pi_{d})$
 $\vec{v} = (y_{1}, ..., y_{d})$
Then $\vec{u} \cdot \vec{v} = \sum_{i=1}^{d} \pi_{i} y_{i}$ A scaler, sum of product for
every pair of coord in same dim.
Some properties
 $\cdot c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v})$
 $\cdot \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
 $\cdot \vec{u} + (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \vec{w}$
 $\cdot \vec{u} \cdot \vec{u} = \|\vec{u}\|^{2}$

Theorem "Physicists' dot product"
$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

$$\vec{u} := \langle 0, 3, -3 \rangle$$

$$\vec{v} := \langle 2, 1, -1 \rangle$$

Find angle between them.

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \right)$$

$$= \cos^{-1} \left(\frac{0+3+3}{\sqrt{6} \cdot \sqrt{18}} \right)$$

$$= \cos^{-1} \left(\frac{6}{\sqrt{6 \cdot 18}} \right)$$

$$\approx 54.3^{\circ}$$

In \mathbb{R}^2 find set of vectors \vec{v} s.t. $comp_{\vec{u}}(\vec{v}) = k$ for $\vec{u} \neq 0$ and \vec{k} constant.

/