Lee 2
Standard basis vecs for \mathbb{R}^{d} with $d>3$.

$$
\begin{array}{r}
e_{1}=\langle 1,0, \ldots, 0\rangle \\
e_{i}=\langle 0, \ldots, 1, \ldots, 0\rangle \\
\text { it coordinate }
\end{array}
$$

\# Dot Product aka "inner product"
Def: Let $\vec{u}=\left\langle x_{1}, \ldots, x_{d}\right\rangle$

$$
\vec{v}=\left\langle y_{1}, \ldots, y_{d}\right\rangle
$$

Then $\vec{u} \cdot \vec{v}=\sum_{i=1}^{d} x_{i} y:$ - A scaler. sum of product for every pair of coord in same dim.
Some properties

$$
\begin{aligned}
& \cdot c(\vec{u} \cdot \vec{v})=(c \vec{u}) \cdot \vec{v}=\vec{u} \cdot(c \vec{v}) \\
& \cdot \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u} \\
& \cdot \vec{u}+(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \vec{w} \\
& \cdot \vec{u} \cdot \vec{u}=\|\vec{u}\|^{2}
\end{aligned}
$$

$$
\leftarrow \text { Proofs follow from defuition }
$$

Dot prod applications

* Measuring angles

Let $\vec{u}, \vec{v} \in \mathbb{R}^{d}$
Let θ :

Theorem "Physicists' dot product"
$\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

$$
\begin{aligned}
& \vec{u}=\langle 0,3,-3\rangle \\
& \vec{v}=\langle 2,1,-1\rangle
\end{aligned}
$$

Find angle between them.

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

$$
\Rightarrow \theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right)
$$

$$
=\cos ^{-1}\left(\frac{0+3+3}{\sqrt{6} \cdot \sqrt{18}}\right)
$$

$$
=\cos ^{-1}\left(\frac{6}{\sqrt{6 \cdot 18}}\right)
$$

$$
\approx 54.7^{\circ}
$$

Proof:

By low of cos:

$$
\begin{aligned}
& \|\vec{u}-\vec{v}\|^{2}=\|\vec{v}\|^{2}+\|u\|^{2}-2\|\vec{v}\|\|\vec{u}\| \cos \theta \\
& (\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=\vec{v} \cdot \vec{v}+\vec{u} \cdot \vec{u}-2\|\vec{v}\|\|\vec{u}\| \cos \theta \\
& \vec{v} \cdot \vec{v}-2 \vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{u}=\vec{v} \cdot \vec{v}+\vec{u} \cdot \vec{u}-2\|\vec{v}\|\|\vec{u}\| \cos \theta \\
& \vec{u} \cdot \vec{v}=\|\vec{v}\|\|\vec{u}\| \cos \theta
\end{aligned}
$$

* Vector projection

Let $\vec{u}, \vec{v} \in \mathbb{R}^{d}$
Prov $\vec{u}(\vec{v})$ measures portion of \vec{v} in direction of \vec{u}

Formula:
$\operatorname{Proj}_{\vec{u}}(\vec{v})=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u}$
Well, $\frac{\vec{u}}{\|\vec{u}\|}$ gives unit vector in dir of \vec{u}
Also $\cos \theta=\frac{x}{\|\vec{v}\|} \quad$ called scalar projection.
So $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{x}{\|\vec{v}\|} \Rightarrow x=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|}$

Denoted comp $\vec{n}(\vec{U})$

In \mathbb{R}^{2} fund set of vectors \vec{v} s.t. comp $\vec{u}(\vec{v})=k$ for $\vec{u} \neq 0$ and \vec{k} constant.

Try do it using formula

