Lee 3 Basic surfaces, cross products, quadric surfaces
\# Basic Surfaces (in \mathbb{R}^{3})

- Planes $a x+b y+c z=d \rightarrow a x+b y=c$ in \mathbb{R}^{2}
- Spheres $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} \quad r$ is radius, centre is at (a, b, c)
- Cylinders
- Right cylinder - solution to equation in less than 3 variables in \mathbb{R}^{3} some shape stretched out in a direction

\# Generalise to any dim
In \mathbb{R}^{d} :
- hyperplane $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}=b$
- hypersphere $\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\cdots+\left(x_{d}-a_{d}\right)=r^{2}$
* Determine stuff from points.
- \mathbb{R}^{3} - 3 points on the same line determine a plane

Well - say we have $a x+b y+c z=d$.

$$
\Leftrightarrow\langle a, b, c\rangle \cdot\langle x, y, z\rangle=d
$$

Suppose $d=0$.
The points are $(0,0,0) \sim$ since $d=0$

$$
\left(x_{2}, y_{2}, z_{2}\right)
$$

$$
\left(x_{3}, y_{3}, z_{3}\right)
$$

\mapsto Then the plane will be $a x+b y+c z=0$.
We wont $\langle a, b, c\rangle$ sit. $\left.\langle a, b, c\rangle \cdot\left\langle x_{2}, y_{2}, z_{2}\right\rangle=0\right]$ - Hmm that hooks like $\left.\langle a, b, c\rangle \cdot\left\langle x_{3}, y_{3}, z_{3}\right\rangle=0\right]$ infinite solutions
What it we find the vector that's perpendicular to $\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and $\left\langle x_{3}, y_{3}, z_{3}\right\rangle$
| Recall: \vec{u} and \vec{v} orthogonal if $\vec{u} \cdot \vec{v}=0$
Def: Given $\vec{u}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$

$$
\dot{v}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle
$$

Their cross product $\vec{u} \times \vec{v}$ is the formal determinant of

Ex. $\langle 5,0,4\rangle \times\langle 2,3,3\rangle$

$$
=\operatorname{det}\left[\begin{array}{lll}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
5 & 0 & 4 \\
2 & 3 & 3
\end{array}\right]=\langle 0.3-3.4,2.4-3.5,5.3-2.0\rangle
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right] \quad \begin{array}{|}
\text { Anticommutative! } \\
& \vec{u} \times \vec{v}=-(\vec{v}-\vec{u})
\end{array}} \\
& \Rightarrow \vec{u} \times \vec{v}=\vec{\nu}\left(y_{1} z_{2}-y_{2} z_{1}\right)-\vec{\jmath}\left(x_{1} z_{2}-x_{2} z_{1}\right)+\vec{k}\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
& =\left\langle y_{1} z_{2}-y_{2} z_{1}, x_{2} z_{1}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right\rangle
\end{aligned}
$$

