Les 4
\# Equations of planes and \mathbb{R}^{3}, general version
Consider a plane containing $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$
Let the plane be $a x+b y+c z=d$.
Then $\langle a, b, c\rangle$ is a vector nonual to the plane
So funding this normal vector helps us find the plane.

1. Get two vectors from the three pouts
2. Cross them
i.e. $\quad\langle a, b, c\rangle=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle \times\left\langle x_{3}-x_{1}, y_{3}-y_{1}, z_{3}-z_{1}\right\rangle$
then $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ is the equation
Higher dim generalisation: normal vector + plane always work!
But - cross product only works in \mathbb{R}^{3} ! Use the higher dim equivalence.
In \mathbb{R}^{4}, it would be $\left[\begin{array}{ccc}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \vec{e}_{4} \\ -\vec{v}_{2}-\vec{v}_{1}- \\ -\vec{v}_{3}-\vec{v}_{1}- \\ -\vec{v}_{4}-\vec{v}_{1}\end{array}\right]$
$\#$ Lines in \mathbb{R}^{3}
\rightarrow Can be determined by a pout and a direction vector
\rightarrow Can be determined by two points
Let P, Q be points
Then vector equation is $\vec{r}(t)=\overrightarrow{O P}+\overrightarrow{P Q} t$
move whatever a vector on to P that line

Ex. $\quad P=(4,-1,2), \quad Q=(3,-1,-1)$
$\vec{r}(t)=\langle 4,-1,2\rangle+t\langle-1,0,3\rangle$ is the vector equation
\rightarrow Parametric form $\quad \begin{aligned} & x=4-t \\ & y=t\end{aligned}$
$z=2-3 t$

Question

Any center point?

