Lee 5 Parallel, Intersecting Lines/Planes, Skew Lines, Distances

* Line arrangement in \mathbb{R}^{3}

They are either:

* Parallel
* Intersecting
* Skew (neither) \leftarrow Most likely, when drawing randover lines. cactually too percent probability)
Intersecting
Ex. find intersection between $\vec{r}_{1}(t)=\langle 2,3,3\rangle+t\langle 1,1,2\rangle$

$$
\vec{r}_{2}(t)=\langle 1,4,2\rangle+t\langle 1,-1,1\rangle
$$

\rightarrow Set up a system (with different variable for each)
So $2+t=1+s$
$\left.\begin{array}{l}3+t=4-s \\ 3+2 t=2+s\end{array}\right]$ Then solve $A t$.

$$
\cdots t=0, s=1 .
$$

So point of intersection is $(2+0,3+0,3+0)=(2,3,3)$
Parallel
Def: \vec{u} and \vec{v} with $\vec{u}, \vec{v} \neq \overrightarrow{0}$ if $\vec{u}=c \vec{v}$ for $c \neq 0$.

$$
\begin{aligned}
& \text { or if } \vec{u} \times \vec{v}=\overrightarrow{0} \text {. } \\
& \text { or if }|\vec{u} \cdot \vec{v}|=\|\vec{u}\|\|\vec{v}\| \text {. }
\end{aligned}
$$

\# Plane arrangements in \mathbb{R}^{3}.
They are either:

* Parallel \leftarrow Normal vectors are parallel
* Intersecting \leftarrow Intersection is a line

Ex. fine live of intersection between $5 x+3 y+z=10$] Just solve it by picking

$$
\begin{aligned}
& 5 x+3 y+z=10 \\
& 8 x+9 y+2 z=9
\end{aligned} \quad \begin{aligned}
& \text { Dust solve at by prick } \\
& \text { enviable. }
\end{aligned}
$$

\# Distance between point and line in \mathbb{R}^{3}.

$$
\begin{aligned}
& \text { Point: } P=\left(x_{0}, y_{0}, z_{0}\right) \\
& \text { Line } \vec{r}(t)=\left\langle x_{1}, y_{0}, z_{1}\right\rangle+t\langle a, b, c\rangle
\end{aligned}
$$

\rightarrow Find t such that the distance between point at $\vec{r}(t)$ and P is minimised (shortcut is to minimise squared distance)
\rightarrow Geometric way

$$
\begin{array}{rlrl}
P=\left(x_{0}, y_{0}, z_{0}\right) \\
\hat{x}_{0} & \text { dist }=\| \vec{P}, b, c\rangle & \|\overrightarrow{P Q}\| \sin \theta & =\|\overrightarrow{P Q}\| \frac{\|\overrightarrow{P Q} \times\langle a, b, c\rangle\|}{\|\overrightarrow{P Q}\|\|\langle a, b, c\rangle\|} \\
Q=\left(x_{1}, x_{2}, x_{3}\right) & & =\frac{\|\overrightarrow{P Q} \times\langle a, b, c\rangle\|}{\|\langle a, b, c\rangle\|}
\end{array}
$$

* Distance between point and plane in \mathbb{R}^{3}

Let $P=\left(x_{0}, y_{0}, z_{0}\right)$
$a x+b y+c z=d$
\rightarrow We can also nimuise
\rightarrow Geometric

$$
\begin{aligned}
\cos \theta & =\frac{\text { dist }}{\|\overrightarrow{P Q}\|} \\
& =\frac{\langle a, b, c\rangle \cdot \overrightarrow{Q P}}{\|\langle a, b, c\rangle\|\|\overrightarrow{Q P}\|} \\
\text { dist } & =\frac{\langle a, b, c\rangle \cdot \overrightarrow{Q P}}{\|\langle a, b, c\rangle\|}
\end{aligned}
$$

