Lee 6 Quadric Surfaces
\rightarrow The \mathbb{R}^{3} analogue of conic sections

* Conic sections (refresher)
- parabola $x^{2}=y+1 \quad$ - hyperbola $\frac{x^{2}}{5}-\frac{y^{2}}{11}=3$
- ellipses $\quad \frac{x^{2}}{4}+y^{2}=2 \quad-X$ shape $\quad x^{2}=3 y^{2}$
\# Quadric surfaces
* We get these when solving degree 2 polynomials with 3 vars
$-x^{2}+y^{2}+z^{2}=1 \rightarrow$ sphere
$-x^{2}+y^{2}=z^{2} \rightarrow$ cone
usually we don't
(deal with these they typically make
* General form: $A x^{2}+B y^{2}+C z^{2}+D_{x y}+E_{x z}+F_{z y}+H x+I_{y}+J_{z}+K=0$

Types

* cone $\rightarrow 8$
$*$ Ellipsoid $\rightarrow \infty, \overbrace{\uparrow} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
* Hyperboloid with one sheet \uparrow
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
©Homogeneons. All to $2^{\text {nd }}$ power

Identifying these:

1. move constants to one side
2. make constant positive
3. see um of - signs.
$0 \Rightarrow$ ellipsoid
$1 \Rightarrow$ hyperboloid I sheet
$2 \Rightarrow$ hyperboloid 2 sheet $3 \Rightarrow: \subset \quad \varnothing$

* Elliptic paraboloid $\rightarrow 0 \quad z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leftarrow$ slices U or 0%.
* Hyperbolic paraboloid $\cup \boldsymbol{z}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \ll \begin{aligned} & \text { slices in } z \text { direction } \asymp / X /)(\text {. } \\ & \text { slices in another direction all } \cup\end{aligned}$
* These can all be sliced from \mathbb{R}^{4} cones C there are 2 types of $4 D$ cones, Other situations we mean at least one of them)
* If one of x, y, z absent, we get a cylinder
* If one if to $2^{\text {nd }}$ power and other to $1^{\text {st }}$ power, a slanted cylinder \# Traces

