Lec 6 Quadric Surfaces

> The R3 analogue of conic sections

* Conic cections (refresher)

- parabola $x^2 = y + 1$ - hyperbola $\frac{x^2}{5} - \frac{y^2}{11} = 3$ - ellipses $\frac{x^2}{4} + y^3 = 2$ - X shape $x^2 = 3y^2$

Quadric surfaces

* Cone
$$\Rightarrow$$

* Ellipsoid \Rightarrow
* Hyperboloid with one sheet $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
* Hyperboloid with two sheet $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
* Hyperboloid with two sheet $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
* Hyperboloid with two sheet $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Homogeneers. All to 2nd power
* $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Homogeneers. All to 2nd power
* $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Homogeneers.

* Elliptic paraboloid $\Rightarrow \bigcirc \qquad \Xi = \frac{X^2}{a^2} + \frac{y^2}{b^2} = slices U \text{ or } \bigcirc /.$ * Hyperbolic paraboloid UV $\Xi = \frac{X^2}{a^2} - \frac{y^2}{b^2} = slices in z direction <math>(X/X/)(.$

* These can all be cliced from IR " comes (there are 2 types of 4D comes, we mean at least one of them)