Lec T Vector valued functions and space curves
* Vector valued func:
$$\vec{r} \cdot \mathbf{R} \neq \mathbf{R}^{d}$$
 * space curve is its graph
Ex. helix in $\mathbf{R}^{2} - \vec{r}(t) = \langle \cos t, \sin t, t \rangle$
Cole can help find:
- Arc length of space curve
- Tangent line of space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Limit & derivative for space curve
- Curvature
Derivative
Derivative
Tangent hine.
Example. find tangent vec and hine for $\vec{r}(t) = \langle t, t^{2}, t^{2} \rangle$ at (2.4.8).
So $t = 2$
 $r'(t) = \langle 1, 2t, 3t^{2} \rangle$ $r'(2) = \langle 1, 4, 12 \rangle$
 $L(t) = (2, 4, 8; 5 + t (1, 4, 12)$

* Principle unit tangent vector
Let
$$F(t)$$
 be space unive
Def: $T(t) = \frac{T'(t)}{\|F(t)\|}$ when $F'(t)$ exists and non-zero
Basically we get isl of the parenetwistion.
That get unit vec for direction info
* Integrals of space curves
 $\int_{a}^{b} F(t) dt = \left(\int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right) = think of t as time and r(t) is velocity.$
Ex. velocity $J(t) = (t, t^{2}, t^{3})$
stort position (0,1,0) at rest
fund position $dt t=2$.
 $\int J(t) dt = \left(\frac{t^{2}}{2}, \frac{t^{3}}{5}, \frac{t^{4}}{4} \right) + C$
 $F(t) = \left(t, 10 \right) \Rightarrow C = (0,1,0)$
 $\Rightarrow F(t) = \left(\frac{t^{2}}{2}, \frac{t^{3}}{5}, \frac{t^{4}}{4} \right) + (0,1,0)$
 $F(x) = \left(2, \frac{t^{3}}{5}, 4 \right).$

Arc length $\mathcal{A} = \int_{a}^{b} \|\vec{r}'(t_{\tau})\| dt .$