\# Reparameterisation by are length particle" doesn'4 matter.
\rightarrow by I unit of distance (arc length) per unit of time
Def: Let $\vec{r}(t)$ be space curve for $a \leqslant t \leq b$. Then are length function:

$$
\Delta(t)=\int_{a}^{t}\left\|r^{2}(t)\right\| d u \quad \text { for } t \in[a, b]
$$

Consider $\vec{r}(t)=\left\langle t^{2}, \underline{2} t, 1\right\rangle$ for $0 \leqslant t<\infty$
$\vec{r}^{\prime}(t)=\langle 2 t, \underline{2}, 0\rangle$ this does not follow. The original curve might have

$$
\Rightarrow \Delta(t)=\int_{0}^{t} \sqrt{4 u^{2}+16 u^{2}} d u=\int_{0}^{t} \sqrt{20} u d u=\sqrt{20} t^{2}
$$

Then we solve $s=s(t)$ for t

$$
\begin{aligned}
J=J(t) & =\sqrt{20} t^{2} \\
t^{2} & =\frac{6}{\sqrt{5}} \\
t & =\sqrt{\frac{8}{\sqrt{5}}}
\end{aligned}
$$

Now $\vec{r}(\Delta)$ moves at standard speed

$$
\begin{aligned}
\vec{r}(t) & =\left\langle t^{2}, 2 t, 1\right\rangle \\
\Rightarrow \vec{r}(s) & =\left\langle\left(\sqrt{\frac{8}{\sqrt{5}}}\right)^{2}, 2\left(\sqrt{\frac{6}{\sqrt{5}}}\right), 1\right\rangle
\end{aligned}
$$

\# Principle unit normal vector
Def: $\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|}$
\# Curvature
Take smooth curve $\vec{r}(t) \downarrow$ magnitude of change in direction

Def. curvature $K=\frac{d\|T(s)\|}{d s}$ where $T(s)$ is principle tangent vector per change in are length
This is kind of hand to calculate ... we need to find fund $\Delta(t)$ and $\delta^{\prime}(t)$ and $T(s) \ldots$

Ham there's a shorrent in $\mathbb{R}^{\mathbf{3}}$
Theorem: if $\vec{r}(t)$ in $\mathbb{R}^{\mathbf{3}}$, then

$$
K(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}
$$

and

$$
K(t)=\frac{\left\|r^{\prime}(t) \times r^{\prime \prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|^{3}}
$$

end
Prof
By $d c^{f}, \quad K=\left\|\frac{d T}{d s}\right\|=\left\|\frac{d T / d t}{d s / d t}\right\|$.

$$
\begin{aligned}
& -\left\|\frac{d T}{d t}\right\|=\left\|T^{\prime}(t)\right\| \\
& -\left\|\frac{d s}{d t}\right\|=\left\|r^{\prime}(t)\right\| \\
& \Rightarrow \frac{\left\|T^{\prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}
\end{aligned}
$$

Theorem: $T \cdot T^{\prime}=0$

$$
-T \cdot T=1 ;(T \cdot T)^{\prime}=I^{\prime} \Rightarrow T^{\prime} \cdot T+T \cdot T^{\prime}=0 \Rightarrow T \cdot T^{\prime}=0
$$

Theorem: $\vec{r}(t), \vec{q}(t)$ be space curves, then

$$
\begin{aligned}
& \frac{d}{d t}(\vec{r} \cdot \vec{q})=\vec{r}^{\prime} \cdot \vec{q}+\vec{r} \cdot \vec{q}^{\prime} \quad \text { and } \\
& \frac{d}{d t}(\vec{r} \times \vec{q})=\vec{r}^{\prime} \times \vec{q}+\vec{r} \times \vec{q}^{\prime}
\end{aligned}
$$

\rightarrow Now WTS $\left\|T^{\prime}(t)\right\|=\frac{\left\|r^{\prime}(t) \times r^{\prime \prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|^{2}}$
Recall $T(t)=\frac{r^{\prime}(t)}{\left\|r^{\prime}(t)\right\|}$ and $\|r(t)\|=\frac{d s}{d t}$
So $r^{\prime}(t)=\left\|r^{\prime}(t)\right\| T(t)=\frac{d s}{d t} T(t)$

$$
\Gamma^{\prime \prime}(t)=\frac{d s}{d t} T^{\prime}(t)+\frac{d^{2} s}{d t^{2}} T(t)
$$

Then $r^{\prime}(t)=r^{\prime \prime}(t)=\frac{d 0}{d t} T \times\left(\frac{d_{s}}{d t} T^{\prime}+\frac{d^{2} s}{d t^{2}} T\right)$

$$
=\left(\frac{d s}{d t_{s}}\right)^{2} T \times T^{\prime}+\frac{d s}{d t}\left(\frac{d^{2} s}{d t^{2}}\right) \tau \times T^{0}
$$

$$
=\left(\frac{d s}{d t}\right)^{2} T \times \top^{\prime}
$$

Then $\left\|r^{\prime} x r^{\prime \prime}\right\|=\left(\frac{d s}{d t}\right)^{2}\left\|\left(T \times T^{\prime}\right)\right\|$
$=\left(\frac{d s}{d t}\right)^{2}\|T\|\left\|T^{\prime}\right\| \sin \theta$
$=\left\|r^{\prime}(t)\right\|^{2}\left\|T^{\prime}\right\|$

