Lec 8

We want to try standardice parameter so that "speed of
Representation by ane length particle doesn't netter.
= by I with of distance (arc length) per with of time
Def: Let
$$\vec{r}(t)$$
 be space curve for $a \leq t \leq b$. Then are length function:
 $s(t) = \int_{a}^{t} \|\vec{r}(t)\| du$ for $t \in [a, b]$
Consider $\vec{r}(t) = (t^2, \frac{2}{2t}, 1)$ for $0 \leq t < \infty$
 $\vec{r}'(t) = (2t, \frac{2}{2}, 0)$ This does not follow. The original curve might have
been $\vec{r}(t) = (t^2, 2t, 1)$ for $0 \leq t < \infty$
 $\vec{r}'(t) = (2t, \frac{2}{2}, 0)$ This does not follow. The original curve might have
 $s d(t) = \int_{a}^{t} |4u^2 + 16u^2 du = \int_{0}^{t} to u du = \sqrt{2t} t^2$
Then we call $s = s(t)$ for t
 $s = s(t) = to t^*$
 $t^2 = \frac{4}{\sqrt{5t}}$
Now $\vec{r}(d)$ moves at standard speed
 $\vec{r}(t) = (\{t^2, 2t, 1\})$
 $\Rightarrow \vec{r}(d) = (\left(\int_{\sqrt{5t}}^{d} \int_{a}^{b} (1) \int_{a$

Principle unit normal vector

$$Def: \vec{N}(t) = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|}$$

Curvature

Curvature
Take smooth curve
$$\vec{r}(t)$$
 $rangentrude of change in direction
Def. curvature $K = \frac{d||T(t)||}{dt}$ where $T(t)$ is principle tangenet vector
per change in arc length.
This is keined of hand to calculate... we need to find fluid $d(t)$ and $d'(t)$ and $T(t)$...
Humm there's a shortext in \mathbb{R}^{2}
Theorem: $\vec{r}(t)$, $\vec{q}(t)$ be space curves, then
 $K(t) = \frac{\|T'(t)\|}{\|T'(t)\||}$
and
 $K(t) = \frac{\|T'(t)\|}{\|T'(t)\|^{2}}$
read
 f
Theorem: $\vec{r}(t) = \vec{r}' \cdot \vec{q} + \vec{r} \cdot \vec{q}'$ and
 $\frac{d}{dt} (\vec{r} \cdot \vec{q}) = \vec{r}' \cdot \vec{q} + \vec{r} \cdot \vec{q}'$ and
 $\frac{d}{dt} (\vec{r} \cdot \vec{q}) = \vec{r}' \cdot \vec{q} + \vec{r} \cdot \vec{q}'$ and
 $K(t) = \frac{\|T'(t)\|}{\|T'(t)\|^{2}}$
 ind
 $K(t) = \frac{\|T'(t)\|}{\|T'(t)\|^{2}}$
Now $WTS \|T'(t)\| = \frac{\|r'(t)||^{2}}{\|T'(t)\|}$ and $\|r(t)\| = \frac{d_{t}}{dt}$
 $Recall $T(t) = \frac{d_{t}}{(t)} T(t) = \frac{d_{t}}{dt} T(t)$
 $r''(t) = \frac{d_{t}}{dt} T(t) + \frac{d_{t}}{dt} T(t) + \frac{d_{t}}{dt} T(t)$
 $r''(t) = \frac{d_{t}}{dt} T(t) + \frac{d_{t}}{dt} T(t) + \frac{d_{t}}{dt} T(t)$
 $r''(t) = \frac{d_{t}}{dt} T(t) + \frac{d$$$