Lee 10 Derivative of fincivon with multi. variable.

* Definitions
* Scalar-valued function
$f: D \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}$ assigns each $\left(x_{1}, \ldots, x_{d}\right) \in D$ a real um $z=f\left(x_{1}, \ldots, x_{d}\right)$ eg.
* Traces \& level set

Say $z=f(x, y)$.
2D independent var

A trace is the 2D intersection parallel to one coord axis
A level set is the $z=k$ trace of 2 . In case of \mathbb{R}^{3} this aka level curve A vertide trace is a trace along one of independent var.

A contour map is sketch of level curve in R^{2}

Now consider $\omega=\sqrt{1-x^{2}-y^{2}-z^{2}} \leftarrow$ hemisphere in \mathbb{R}^{4}
\longrightarrow Sphere level surfaces look like spheres for $0 \leqslant \omega<1$
\rightarrow Contour map are nested spheres

* Limit

$$
z=f(x, y)
$$

Def: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$. For any $\varepsilon>0$, there exists

$$
\begin{aligned}
& \delta>0 \text { s.t. if } \operatorname{dist}\left((x, y),\left(x_{0}, y_{0}\right)\right) \in(0, \delta) \text {. } \\
& f(x, y) \in(L-\varepsilon, L+\varepsilon)
\end{aligned}
$$

\longrightarrow see geagetra demo
To show limit DNE, show the limit is different from different directions (there are minute possible directions)

To show limit exists and compute :

* Continuity: f is continuous at $\left(x_{0}, y_{0}\right)$ if $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L_{1} \wedge \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=L_{2} \quad \Rightarrow
$$

* Sunning limit: $\quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)+g(x, y)=L_{1}+L_{2}$
* Product of uncut $\quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) g(x, y)=L_{1} \cdot L_{2}$
* Quotient of limit $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) / g(x, y)=L_{1} / L_{2}$ if $L_{2} \neq 0$.

