Lee 11

* Limit with multiple variables

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{4 x^{2}+10 y+4}{\underbrace{4 x^{2}-10 y^{2}+6}_{1}}=\frac{2}{3}
$$

notice this goes 0 In case where bottom doesn't
go zero, just evaluate go zero, just evaluate.
$\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{3 x^{2}+y^{2}} \rightarrow \begin{aligned} & \text { notice direct eval gets us } \frac{0}{0} \text {. }\end{aligned}$
Maybe DNE
To show DNE: pick two paths to approach and they approach different val

- On $y=0: \quad \cdots=\lim _{x \rightarrow 0^{-}} \frac{2 x(0)}{3 x^{2}+0^{2}}=\lim _{x \rightarrow 0} \frac{0}{3 x^{2}}=0$

On $y=0: \quad \cdots=\lim _{x \rightarrow 0^{-}} \frac{2 x x^{2}}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{0}{3 x^{2}}=0$
On $y=x: \quad \cdots=\lim _{x \rightarrow 0^{+}} \frac{2 x x}{3 x^{2}+x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2}}{4 x^{2}}=\frac{1}{2}$ different when differnat dir $y=0$
Partial Derivative
Let $z=f(x, y)$

* Partial derivative w.r.t. x is $\frac{\partial f}{\partial x}$ or $\frac{\partial z}{\partial x}$ or f_{x} def by $\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$ at pouts where the lime exists π ie fixing y and differentiating
\# Tangent plane

Find tangent place to $z=x^{2}-2 x+x y+1$ at $(1,2)$ plane $y=2$

plane $x=1$

That gives us a point and two vectors.
Then we can just.

1. Cross to get normal vector
2. Shift plane to contain points

General formula: $\quad z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \leftarrow$ (If it exists)
\# Gradient
Let $z=f(x, y)$
Extends to more variables
The gradient $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$
Theoran. If $h=f(x, y, z)$ is a level surface, the tangent plane at (a, b, c) is

$$
\nabla f \cdot\langle x-a, y-b, z-c\rangle=0
$$

Ex: say $z=f(x, y) \Rightarrow 0=f(x, y)-z$ that's a level enface

$$
\begin{aligned}
& \frac{\partial(f(x, y)-z)}{\partial x}=f_{x}(x, y) \\
& \frac{\partial(f(x, y)-z)}{\partial y}=f_{y}(x, y) \\
& \frac{\partial(f(x, y)-z)}{\partial z}=-1
\end{aligned}
$$

Then tangent plane ot $(a, b, f(a, b))$ is

$$
\left\langle f_{x}, f_{y},-1\right\rangle \cdot\langle x-a, y-b, z-f(a, b)\rangle=0
$$

