Lec 11

Limit with multiple variables

 $\lim_{(x,y)\to(a,b)} \frac{4x^2 + 10y + 4}{4x^2 - 10y^2 + 6} = \frac{2}{3}$ In case where bottom doesn't votice this goes 0 In case where bottom doesn't $g_0 \ zero$, just evaluate. $\lim_{(x,y)\to(0,0)} \frac{2\pi y}{3x^2 + y^2} \rightarrow uotice direct eval gets us \frac{0}{0}.$ To show DNE: pick two paths to approach and they approach different val $Gn \ y = 0$: $\dots = \lim_{x\to 0} \frac{2\pi (0)}{3x^2 + 0^2} = \lim_{x\to 0} \frac{0}{3x^2} = 0$ $\lim_{x\to 0} \frac{2\pi x}{3x^2 + x^2} = \lim_{x\to 0} \frac{2\pi x}{3x^2} = \frac{1}{2}$ $\lim_{x\to 0} \frac{2\pi x}{4x^2} = \frac{1}{2}$

* Partial Derivative

Let z = f(x, y)* Partial derivative w.r.t. x is $\frac{\partial f}{\partial x}$ or $\frac{\partial z}{\partial x}$ or f_x def by $\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ at points where the lim exists $h = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ at points where the lim exists $h = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$

* Tangent plane
Find tangent plane to
$$z = x^2 - 2x + ny + 1$$
 at $(1, 2)$
plane $y = 2$
 $plane x = 1$
 $\frac{2x}{2x} = 2$
 $\frac{2x}{2y} = 2$
 $\frac{2x}{2x} = 2$
 $\frac{2x}{2x} = 2$