Lee 12 Linear Approximation and Differentials

* Definitions

Def. if $f(x, y)$ has both partial derivative defined at (a, b), the linear approx is the plane:

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Def: say that f is differentiable at (a, b) if the linear approximation is the tangent plane
formally, $f(x, y)$ is differentiable at (a, b) if:

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-L(x, y)}{\operatorname{dist}((x, y),(a, b))}=0
$$

ie. differentiable means tangent live exist in every direction and they live in the same plane (would be the tangent planes

Theorem: If f_{x} and f_{y} exist and are continucass at (a, b) and f is differentiable at (a, b)
$E_{x}: f(x, y)=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y)+(0,0) \\ 0 & (x, y)=(0,0)\end{array} \longleftarrow \begin{array}{l}\text { Notice both } f_{r} \text { and fy exist at }(0,0), \text { namely } \nabla f=(0,0\rangle \\ \text { However, } f_{x} \text { not continuous along } y=0 \text {. Similifor } f_{y} .\end{array}\right.$ $\uparrow \quad(x, y)=(0,0)$
continues, but not differentiable \quad So linear approx exists but tangent plane doesn't
But consider the $x=y$ direction, $f(x)=\frac{x^{2}}{\sqrt{2 x^{2}}}=\frac{x^{2}}{\sqrt{2}|x|}=\frac{|x|}{\sqrt{2}}-$ no derivative at $(0,0)$
\# Differentiables
If $f(x, y)$ is differentiable at (a, b), then $L(x, y) \approx f(x, y)$
Ex. approximate $z=2 x^{2}-y^{2}$ at $(1.1,0.9)$ using linear approx. at $(1,1)$.

$$
\begin{aligned}
\frac{\partial z}{\partial x}=4 x \quad \frac{\partial z}{\partial y}=-2 y \cdot L(x, y) & =f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
& =1+4(x-1)-2(y-1) \\
L(1.1,0.9) & =1+0.4+0.2=1.6
\end{aligned}
$$

If $z=f(x, y)$ differentiable, its differential at (a, b) is:

$$
d z=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

differential for $y=f(x)$ is $d y=f^{\prime}(a) d x$ at $x=a$.

* Differentiability $d z \approx \Delta z$

$$
\begin{aligned}
& 1, d z=4 x d x-2 y d y . \\
& \text { At } d x=0.1, d y=-0.1, d z=0.6 \Rightarrow \Delta z \approx 0.6 . \\
& f(1.1,0.9) \approx f(1,1)+d z=1+0.6=1.6
\end{aligned}
$$

\# E_{x} : appromating measurement error.
Suppose sides of rectange are 2,3 with ± 0.2 in each dir. How accurate is area?
Let $d x$ be error in x and dy be error in y. Then error in $z=f(x, y)$ is

$$
\begin{aligned}
& \pm\left(\left|f_{x}(a, b) d x\right|+\left|f_{y}(a, b) d y\right|\right) \\
= & \pm(|3 \cdot 0.2|+|2 \cdot 0.2|)= \pm 1.0
\end{aligned}
$$

Intuition:
$f(x)$ at some $y \quad f(y)$ at some x

$$
\begin{aligned}
& V=\pi r^{2} h \\
& d v=2 \pi r h d r+\pi r^{2} d h \\
& \text { Error } \\
& = \pm\left(|2 \pi \cdot 10 \cdot 25 \cdot 0.1|+\left|\pi \cdot 10^{2} \cdot 0.2\right|\right) \\
& \\
& = \pm 70 \pi
\end{aligned}
$$

