Lee 13
\# Nultivari chain rule

DD: $\begin{array}{ll}y=e^{-x^{2}} & y=e^{u} \\ u=-x^{2}\end{array}$
$\frac{d y}{d x}=\frac{d y}{d x} \frac{d y}{d x}$

3D: $z=f(x, y), x=h(t), y=h(t)$. Find $\frac{d z}{d t}$
Suppose $\square_{U=5}^{1 t=10} \frac{d \omega}{d t}=\frac{1}{2}, \frac{d l}{d t}=-\frac{1}{5} \cdot \frac{d A}{d t}=$?
Theorem if $*, \frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y}+\frac{d y}{d t}$
Notation: $\frac{d z}{d x}$ if z only depends on x
$\frac{\partial z}{\partial x}$ if z depends on x and shh else
In ex: $\quad A=\omega l$
$\frac{d A}{d t}=\frac{\partial A}{\partial l} \frac{d l}{d t}+\frac{\partial A}{\partial \omega} \frac{d \omega}{d t}=\omega \frac{d l}{d t}+l \frac{d \omega}{d t}=-5 \frac{1}{5}+10 \frac{1}{2}=4$
\# Tree diagram (var dependency)
I var: $\left\{_{x}^{y} \quad \frac{d y}{d u}=\frac{d y}{d x} \frac{d x}{d u}\right.$
Ex.

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Prev ex:

$$
\begin{aligned}
\frac{d z}{d t}= & \frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& \text { Each path, then add. }
\end{aligned}
$$

More Ex.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& \frac{d V}{d t}=\frac{\partial V}{\partial r} \frac{d r}{d t}+\frac{\partial V}{\partial h} \frac{d h}{d t} \\
&= \frac{2}{3} \pi r h \frac{d r}{d t}+\frac{1}{3} \pi r^{2} \frac{d h}{d t} \\
& 0=\frac{2}{3} \pi(5)(10) \frac{d r}{d t}+\frac{1}{3} \pi(25)(-1) \\
& \frac{2 S}{3} \pi=\frac{100}{3} \pi \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{1}{4}
\end{aligned}
$$

\# Implicit differeutiation
we could also have:
\rightarrow tuear approx afor solve forz
Find tangent plame to ellipsoid $x^{2}+\frac{y^{2}}{9}+2 z^{2}=1$ at $\left(\frac{3}{\sqrt{28}}, \frac{-3}{\sqrt{28}}, \frac{-3}{\sqrt{28}}\right)$
Implicit diff way:

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left[x^{2}+\frac{y^{2}}{9}+2 z^{2}\right]=\frac{\partial}{\partial x}\left[\begin{array}{ll}
1
\end{array}\right] \\
& 2 x \frac{\partial x}{\partial x}+\frac{2 y}{9} \frac{\partial y}{\partial x}+4 z \frac{\partial z}{\partial x}=0 \\
& 2 x+4 z \frac{\partial z}{\partial x}=0
\end{aligned}
$$

then solve for $\frac{\partial z}{\partial x}$, do same for $\frac{\partial z}{\partial y}$, then get plane using $L(x, y)$ formula … $-\frac{3}{\sqrt{2 e}}+\frac{1}{2}\left(x-\frac{3}{\sqrt{28}}\right)-\frac{1}{18}\left(y+\frac{3}{\sqrt{2}}\right)$
\# Tangent plane from gradient
We treat it as level surf $\omega=x^{2}+\frac{y^{2}}{9}+2 z^{2}$

$$
\nabla \omega=\left\langle 2 x, \frac{2 y}{9}, 4 z\right\rangle \text {. } \nabla_{\omega} \text { at pout }=\left\langle 2 \frac{3}{\sqrt{28}}, \frac{-6}{9 \sqrt{28}},-\frac{12}{\sqrt{28}}\right\rangle \text {. }
$$

Rescale for aucther normal vec $=\left\langle 6,-\frac{2}{3},-12\right\rangle$
So a plane: $6\left(x-\frac{3}{\sqrt{28}}\right)-\frac{2}{3}\left(y+\frac{3}{\sqrt{28}}\right)-12\left(z+\frac{3}{\sqrt{28}}\right)=0$

