Lec 13

* Multivari chain rule

2D:
$$y = e^{-x^{2}}$$

 $y = e^{x}$
 $dy = -x^{2}$
 $dy = dy dy$
 $dx = \frac{dy}{dx}$
 $dy = \frac{dy}{dy}$
 $dy = \frac{dy}{dy}$

More
$$Ex.$$

$$\int \int u dt = -1$$

$$\int \int dt = -1$$

$$\int dt = -1$$

$$\int$$

Tangent plane from gradient

We treat it as level surf $w = x^2 + \frac{y^2}{q} + 2z^2$ $\nabla w = \langle 2x, \frac{2y}{q}, 4z \rangle$. ∇w at point $= \langle 2\frac{3}{\sqrt{2g}}, \frac{-6}{9/2g}, -\frac{12}{\sqrt{2g}} \rangle$. Rescale for another normal vec $= \langle 6, -\frac{2}{3}, -12 \rangle$ So a plane: $6(x - \frac{3}{\sqrt{2g}}) - \frac{2}{3}(y + \frac{3}{\sqrt{2g}}) - 12(z + \frac{3}{\sqrt{2g}}) = 0$