Lee 16
\# Constrained optimisation
ie. finding min /mos of f subjected to $g=k$.
Ex. dist from $(1,-1)$ to $2 x-y=6$
Ex. find min of $f(x, y)=(x-1)^{2}+(y+1)^{2}$ subjected to $2 x-y=6$

* Lagrange multipliers - optimising f subjected to $g=k$
\rightarrow find $\max / \min c_{M}, c_{m}$ s.t. $e_{\mu}=f, c_{m}=f$ intersects $g=k$
Thu: then the level sets $f=C_{M}$ and $f=C_{m}$ are tangent to $g=k$
Now recall ∇f is normal to level set $f=c \Rightarrow f=c$ tangent to $g=b \Rightarrow$ at that point ∇f parallel to ∇g. So $\exists \lambda \in \mathbb{R}, \nabla f=\lambda \nabla g$

Lagrange mut
Method:

1. Set up the system: $\nabla f=\lambda \nabla g$ ($f . g$ in \mathbb{R}^{d})

$$
g=k
$$

2. Solve for $\left(\vec{v}_{1}, \lambda_{1}\right), \ldots,\left(\vec{v}_{k}, \lambda_{l}\right)$
3. Check values of $f\left(v_{1}\right), \ldots, f\left(v_{l}\right)$
4. If $l \geqslant 2$, the max of those is max, min of those is min If $l=1$, use context.

* Example
find min of $(x-1)^{2}+(y+1)^{2}$ subjected to $2 x-y=6$

$$
\begin{array}{ll}
f(x, y)=(x-1)^{2}+(y+1)^{2} & g(x, y)=2 x-y \\
\nabla f=\langle 2(x-1), 2(y+1)\rangle & \nabla g=\langle 2,-1\rangle
\end{array}
$$

Solve: $\quad \nabla f=\lambda \nabla g$

$$
\begin{aligned}
& 2(x-1)=\lambda^{2} \\
& 2(y+1)=-\lambda \\
& 2 x-y=6 \\
& \cdots \Rightarrow y=-\frac{8}{5}, x=-\frac{11}{5}, \lambda=\ldots \text { Usually doesn't matter } \\
& \text { So min is at }\left(-\frac{11}{5},-\frac{8}{5}\right)
\end{aligned}
$$

find maximise volume of subject to surface area $=14$.

$$
\begin{aligned}
& f(x, y, z)=x y z \\
& g(x, y, z)=2 x y+2 y z+2 x z=14 \\
& \nabla f=\langle y z, x z, x y\rangle \quad \nabla g=\langle 2 y+2 z, 2 x+2 z, 2 y+2 x\rangle \\
& y z=(2 y+2 z) \lambda \\
& x z=(2 x+2 z) \lambda \quad \lambda \quad \cdots \frac{y z}{2(y+z)}=\frac{x y}{2(x+y)}=\frac{x z}{z(x+z)} \cdots \Rightarrow x=z, x=y, y=z \\
& x y=(2 y+2 x) \lambda \quad 2 x y+2 y z+2 x z=14 \\
& \quad 4 \\
& 6 x^{2}=14 \\
& x=\sqrt{\frac{7}{3}}
\end{aligned}
$$

\Rightarrow Crit point: $\left(\sqrt{\frac{7}{3}}, \sqrt{\frac{7}{3}}, \sqrt{\frac{7}{3}}\right)$
\# Extreme value theorem
Def. A set $S \subseteq \mathbb{R}^{d}$ is closed if for each $\vec{v} \notin S \quad \exists s>0$ sit. all points $\vec{u} \in \mathbb{N}^{d}$ with $\operatorname{dist}(\vec{v}, \vec{u})<\delta$ are not in δ

Thu: Level sets of contiumons funcs are clsed.
Ex. $\left\{(x, y) \mid x^{2}-2 y^{2}=6\right\}$ is closed because it's level set of $x^{2}-2 y^{2}$ and that's cont.
... to be continued

