Lec 18 Gylindrical & Cylindrical coord
* Recall polar coord

$$y = \sqrt{r} + y^{+} + y^{+} + r = r \cos \theta$$

 $\tan \theta = \frac{y}{x} + y = r \sin \theta$
 $\sin \theta = \sin \theta$

$$r = 3 \sin \theta$$
 ... $y = r \sin \theta$
 $\Rightarrow \frac{r}{y} = \frac{3}{r} \Rightarrow r^2 = 3y$
 $\therefore \Rightarrow equation in x, y$

* Cylindrical Coord

* $(x,y,z) \rightarrow (r,\theta,z)$ i.e. the z=0 plane is polar. $r=z \Rightarrow \sqrt{x^{2}+y^{2}} = z$ $r^{2}+z^{2}=9 \Rightarrow x^{2}+y^{2}+z^{2}=0$ # Spherical Coord (ρ, θ, φ) $tan \theta = \frac{y}{x}$ $cos \varphi = \frac{z}{\rho}$ $P = \sqrt{x^{2}+y^{2}+z^{2}}$