3D rectangular double integral

Let z = f(x, y) be continuous on a closed, bounded domain $D \in \mathbb{R}^{2}$. A double integral is defeal as: $\iint_{D} f dA = \lim_{n,m \to \infty} \sum_{i=1}^{n} \int_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A_{ij}$ \mathbb{R}_{iemany} cum

Compute by Iterated Integral

$$\begin{split} \vec{z} &= xy - 2y^{2}x \quad , \quad D = [c_{2},1] \times [-1,2] \\ \iint_{D} xy - 2y^{2}x \quad dA \quad = \int_{-1}^{2} \int_{0}^{1} xy - 2y^{2}x \quad dx \quad dy \\ &= \int_{-1}^{2} \left(\frac{x^{2}y}{2} - \frac{2y^{2}x^{2}}{2}\right)_{x=0}^{x=1} \right) dy \\ &= \int_{-1}^{2} \frac{y}{2} - y^{2} \, dy \\ &= \int_{-1}^{2} \frac{y^{2}}{2} - \frac{y^{3}}{2} \, dy \end{split}$$

Note:
$$\int_{-1}^{2} \int_{0}^{1} xy - 2y^{2}x \, dx \, dy$$

$$\int_{0}^{1} \int_{-1}^{2} xy - 2y^{2}x \, dy \, dx$$

Fubini's theorem for rectangular region

If f continuous on
$$D = [a, b] \times [c, d]$$
, then
 $\iint_{D} f dA = \int_{a}^{b} \int_{c}^{d} f dy dx = \int_{c}^{d} \int_{a}^{b} f dx dy$

Double integrals over general region & some defi
Ex: Let D be region between
$$y = x^2$$
 and $y = ix$
Eval: $\iint_{D} I \, dA = \iint_{x=0}^{x=1} \iint_{y=x^2} I \, dy \, dx$
pick once the slice of whatever
to ecan over the slice of whatever
to ecan over the slice of the slice of the slice of the source of the two whatever
to ecan over the two whatever
to ecan over the two whatever
to ecan over the slice of th

$$(\text{from previous}) = 3 \int_0^1 \left(\frac{3xy^2}{2} \right) \frac{4\pi}{x^2} dx$$
$$\dots = \frac{3}{4} (?)$$

Ex: find vol of tetrahedron with verts (0,0,0), (1,0,0), (0,1,0), (0,0,1)

