Lee 19 Double Integrals
\# SD rectangular double integral
Let $z=f(x, y)$ be continuous on a closed, bounded domain $D \subseteq \mathbb{R}^{2}$.
A double integral is defed as:

$$
\iint_{D} f d A=\lim _{n, m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j}
$$

Riemann sum
Intuition:

Slice \rightarrow sample \rightarrow sum
\# Compute by Iterated Integral

$$
\begin{aligned}
z=x y-2 y^{2} x, \quad D & =[0,1] \times[-1,2] \\
\iint_{D} x y-2 y^{2} x d A & =\int_{-1}^{2} \int_{0}^{1} x y-2 y^{2} x d x d y \\
& =\int_{-1}^{2}\left(\frac{x^{2} y}{2}-\left.\frac{2 y^{2} x^{2}}{2}\right|_{x=0} ^{x=1}\right) d y \\
& =\int_{-1}^{2} \frac{y}{2}-y^{2} d y \\
& =\frac{y^{2}}{4}-\left.\frac{y^{3}}{3}\right|_{-1} ^{2}
\end{aligned}
$$

Note: $\quad \int_{-1}^{2} \int_{0}^{1} x y-2 y^{2} x d x d y$
$\int_{0}^{1} \int_{-1}^{2} x y-2 y^{2} x d y d x$
\# Fubini's theorem for rectangular region
If f continuous on $D=[a, b] \times[c, d]$, then

$$
\iint_{D} f d A=\int_{a}^{b} \int_{c}^{d} f d y d x=\int_{c}^{d} \int_{a}^{b} f d x d y
$$

\# Double integrals over general region some def
E_{x} : Let D be region between $y=x^{2}$ and $y=\sqrt{x}$
Eval: $\iint_{D} 1 d A=\int_{x=0}^{x=r} \int_{\substack{x=x^{2}}}^{y=\sqrt{x}} 1 d y d x$
pick one ${ }^{\prime}$ the slice at whatever
to scam over that x, which function generalises to more layers as enter, that x, which function
bounded by is il pendent
abs min $/$ max
of the thess genseric
minn max
minn $/ \max$ of
that var
Thus: for close, bounded region $D \subseteq \mathbb{R}^{2}, \iint_{D} 1 d A$ is just the area of D.
Def: for cont f on close, bounded region $D \subseteq \mathbb{R}^{2}$, the average val of f on D is

$$
f_{\text {arg }}=\frac{\iint_{D} f d A}{\text { Area }(D)}
$$

E_{x} : find avg val of $z=3 x y$ between $y=x^{2}$ and $x=\sqrt{x}$

$$
\begin{aligned}
f_{\text {aug }}=\frac{\iint_{D} 3 x y d A}{\frac{1}{3}} & =3 \int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} 3 x y d y d x \\
\text { (from previous) } & =3 \int_{0}^{1}\left(\frac{3 x y^{2}}{2} \left\lvert\, \begin{array}{l}
\sqrt{x} \\
x^{2}
\end{array}\right.\right) d x \\
\cdots & =\frac{3}{4} \text { (?) }
\end{aligned}
$$

Ex: fund vol of tetrakedren with verts $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$

