Lee 21
\# Triple integrals
Def Let f be cont. on closed, bounded $E \subseteq \mathbb{R}^{3}$,

$$
\begin{aligned}
\iiint_{E} f d V & =\sum_{k=1}^{\ell} \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}\right) V_{i j k} \\
& \approx \sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}\right) \Delta x \Delta y \Delta k
\end{aligned}
$$

Ex. Show vol of sphere with radius r
Let $E=$ ball of radius r centered around coign this is bounded by $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}\right\}$

$$
\begin{aligned}
\iiint_{E} I d V & =\int_{-r}^{r} \int_{-\sqrt{r^{2}-z^{2}}}^{\sqrt{r^{2}-z^{2}}} \int_{-\sqrt{r^{2}-z^{2}-y^{2}}}^{\sqrt{r^{2}-z^{2}-y^{2}}} 1 d x d y d z \\
& =\int_{-r}^{r} \int_{0}^{2 \pi} \int_{0}^{\sqrt{r^{2}-z^{2}}} s d s d \theta d z \text { } \downarrow \text { 年 aglindreal } \\
& =\int_{-r}^{r}\left(r^{2}-z^{2}\right) \pi d z
\end{aligned}
$$

$\mathrm{min} /$ max of z is when $x=4, y=0$ $\Rightarrow-2 \leqslant z \leqslant 2$
fix some z, then min / \max of y is $\sqrt{4-z^{2}}=y \Rightarrow-\sqrt{4-z^{2}} \leqslant y \leqslant \sqrt{4-z^{2}}$ for come y, then min max of x is $y^{2}+z^{2} \leq x \leqslant 4$
E.. vol of tetrahedion $(0,0,0),(0,1,0),(1,0,0),(0,0,1)$ $\iiint_{E} 1 d V=\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-z-y} 1 d x d y d z$

