Lee 24 Apps of integrals in probability and centre of mass
\# Density
Def A density function ρ on $D \leqslant \mathbb{R}^{d}$ is a func $\rho(\vec{x}) \geqslant$ for all $\vec{x} \in D$ so that

$$
\underbrace{\iint \cdots \int \rho d V \in(0, \infty)}_{\text {Lithe mass }}
$$

Def A probibility density on D is density ρ s.t. the mass $=1$

$$
\text { Ex. } f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad \text {, which satisfies } \int_{-\infty}^{\infty} f d x=1
$$

τ Aka Gaussian / normal distribution
Def Contumons random variable is what we get if we sample x from some P

$$
\begin{aligned}
& \begin{aligned}
\text { Ex. } & X \sim X \text { sampled from standard } \\
& P_{c}\left(X \leq x_{0}\right)=\int_{-\infty}^{x_{0}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
\end{aligned} \\
& \boldsymbol{E}(x)=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& E_{x .} \quad X \sim E_{x p}(\lambda)-f(x)=\lambda e^{-\lambda x} \text { on }[0, \infty) \\
& P_{c}\left(x \leqslant x_{0}\right)=\int_{0}^{x_{0}} \lambda e^{-\lambda x} d x \\
& \mathbb{E}(x)=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda}
\end{aligned}
$$

Def Expected val or expectation or average val of x is

$$
\mathbb{E}(x)=\int \cdots \int_{D} x \rho d v
$$

\# Multivariable - density in $\geqslant 2$ variables, sample vector
Ex. select (X, Y) as a point uniformly from unit disk at origin
$P(x, y)=\frac{1}{\pi} \leftarrow \underline{\text { Uniform distribution }: \text { density }}$ $\iint_{0} P d A=1$

* for cont. rand. rec. (x, y) on D and $E \subseteq D$,

$$
\operatorname{Pr}((X, Y) \in E)=\int \cdots \int_{E} P d V
$$

Same E_{x}, but what is $P\left(x^{2}+y^{2} \leq R^{2}\right)$ for $R \leqslant 1$

$$
\operatorname{Pr}\left(x^{2}+y^{2} \leq R^{2}\right)=\iint_{E} \rho d A=\iint_{E} \frac{1}{\pi} d A=\frac{\operatorname{Area}(E)}{\pi}=R^{2}
$$

Def Two rand vars X and Y are indep if $P_{X, Y}=P_{x} P_{r}$
Ex. $\quad X \sim \operatorname{Exp}(1) \quad Y \sim \operatorname{Exp}(2)$ are index
\longrightarrow Alt: $\operatorname{Pr}(x \leqslant x \wedge Y \leqslant y)=\operatorname{Pr}(x \leqslant x) \operatorname{Pr}(Y \leqslant y)$

$$
p_{X, Y}=p_{X} p_{Y}=e^{-x} 2 e^{-2 y}=2 e^{-x-2 y}
$$

$\operatorname{Pr}(X+Y \leqslant 1)=\iint_{E} 2 e^{-x-2 y} d A$

