Dansity

Def A probibility density on D is density
$$p$$
 s.t. the mass = 1
Ex. $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\pi^2}{2}}$, which satisfies $\int_{-\infty}^{\infty} f \, dx = 1$
C Aka Gaussian / normal distribution

Def Continuous random variable is what we get if we comple X from some
$$\beta$$

 $E_{X.} = X \sim N(0, 1)$
 $E_{X.} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{12\pi}} e^{-\frac{\pi^{2}}{2}} dx$
 $E(X) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{12\pi}} e^{-\frac{\pi^{2}}{2}} dx$
 $E(X) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{12\pi}} e^{-\frac{\pi^{2}}{2}} dx$
 $E(X) = \int_{0}^{\infty} x \frac{1}{\sqrt{12\pi}} e^{-\frac{\pi^{2}}{2}} dx$
 $E(X) = \int_{0}^{\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$
Def Expected val or expectation or everage val of X is
 $E(X) = \int_{0}^{\infty} x \rho dV$

Multivariable - density in >2 variables, sample vector

Ex. select (X,Y) as a point
$$P(x,y) = \frac{1}{4} \leftarrow Uniform distribution: density miformly from unit $\int P(x,y) = \frac{1}{4} \leftarrow Uniform distribution: density is always to Jo PdA = 1 is always to to pdA = 1$$$

* for cond. round. vec.
$$(X,Y)$$
 on D and $E \subseteq D$,
 $Pr((X,Y) \in E) = \int \dots \int_{E} P \, dV$
Some E_X , but what is $P(X^2 + Y^2 \leq R^2)$ for $R \leq I$
 $Pr(X^2 + Y^2 \leq R^2) = \iint_{E} P \, dA = \iint_{E} \frac{1}{\pi} \, dA = \frac{Area(CE)}{\pi} = R^2$

Def Two rand. vans X and Y are indep if $f_{X,Y} = f_X f_Y$ EX. X ~ Exp(1) Y ~ Exp(2) are indep $f_{X,Y} = f_X f_Y = e^{-X} 2e^{-2Y} = 2e^{-X-2Y}$ $Pr(X+Y \leq 1) = \iint e^{2x-2y} dA$