Lee 25
\# More centre of mass
Def for random vec $\left(x_{1}, \ldots, x_{d}\right)$ on D with general density $p\left(x_{1}, \ldots, x_{0}\right)$ the centre of mass is

$$
\begin{aligned}
\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right) & =\left(\frac{\mathbb{E}\left(x_{1}\right)}{m}, \ldots, \frac{\mathbb{E}\left(x_{d}\right)}{m}\right) \\
& =\left(\frac{\iint_{0} x_{1} p d V}{m}, \ldots, \frac{\iint_{D} x_{d p} d V}{m}\right)
\end{aligned}
$$

where $m=\int \ldots \int_{D} \rho d V$
Def for a random var X_{1}, the $k^{\text {th }}$ moment is $E\left(x^{k}\right)$
Ex. fund center of mass for $\begin{aligned} & R=\left\{(x, y) \mid 9 x^{2}+y^{2} \leq 1 \text { in quadrant } 1\right\} \\ & P=\sqrt{9 x^{2}+y^{2}}\end{aligned}$

$$
\begin{aligned}
& m=\iint_{R} \sqrt{9 x^{2}+y^{2}} d A=\iint_{S} \sqrt{u^{2}+v^{2}} \cdot \frac{1}{3} d A=\iint_{T} r \cdot \frac{1}{3} \cdot r d A \\
& u=3 x \quad v=y \quad=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{r^{2}}{3} d r d \theta=\frac{\pi}{18} \\
& x=\frac{4}{3} \quad y=v \quad \\
& \frac{\partial(x, y)}{\partial(m, v)}=\left|\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & 1
\end{array}\right|=\frac{1}{3} \\
& \bar{x}=\frac{18}{\pi} \iint_{R} x \sqrt{9 x^{2}+y^{2}} d A=\frac{18}{\pi} \iint_{S} \frac{u}{3} \sqrt{u^{2}+v^{2}} \cdot \frac{1}{3} d A=\frac{18}{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \frac{r \cos \theta}{3} r \cdot \frac{1}{3} \cdot r d A \quad \cdots=\frac{1}{2 \pi} \\
& \bar{y} \cdots=\frac{3}{2 \pi}
\end{aligned}
$$

* Iutegral factioning (for a, b, c, d constant)

$$
\int_{a}^{b} \int_{c}^{d} f(x) g(y) d x d y=\int_{a}^{b} g(y)\left(\int_{c}^{d} f(x) d x\right) d y=\left(\int_{c}^{d} f(x) d x\right)\left(\int_{a}^{b} g(y) d y\right)
$$

