Lec 26

- # Vector Field (V.F.)
 - Def: a func $\vec{F}: D \Rightarrow \mathbb{R}^n$ for $D \subseteq \mathbb{R}^n$ in the form $\vec{F} = \langle f, \dots, f_n \rangle$ in which each $fi: D \Rightarrow \mathbb{R}$ is a component func

Ex.
$$F(x,y) = (2xy, x^2y^2)$$
 in \mathbb{R}^2

Notation Usually we use P, Q, R for component func $\vec{F} = \langle P, Q \rangle$ in \mathbb{R}^2 , $\vec{F} = \langle P, Q, R \rangle$ in \mathbb{R}^3

<u>Clauses</u> - Gradient vec field f: ℝⁿ → ℝ ← scalar field Vf = < fx, fy, fz > ← an ℝ³ vec field

Def A vec field
$$\vec{F}$$
 is a conservative V.F. also gradient V.F. if
 $\vec{F} = \nabla f$ for a scalar func f .
Ex. $\vec{F} = \langle 2\pi, -2y \rangle$ conservative since $\nabla (x^2 - y^2) = \vec{F}$
Non Ex. $\vec{F} = \langle -y, x \rangle \leftarrow$ relational V.F. not conservative.

The For
$$\vec{F}(P,Q)$$
, if P,Q are c' and $P_y \neq Q_{\pi}$, then \vec{F} not conservative
Not an iff!
Def That f is called a potential function
 $E_{X}.(cent)$ $f = x^2 + y^2 + C$

U
Proof If
$$\vec{F} = \langle P, Q \rangle$$
 concervative, $\exists f \text{ st. } fx = P, fy = Q$.
Since P,Q are c' , f is c^2 . Then by Clairant's than
 $fmy = fyx \Rightarrow Py = Qx$
Consider $\vec{F} = \left(\frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}}\right)$
Will find $Px = Qy$, but \vec{F} is still non conservative
* In general, $Py = Qx$ but $\langle P, Q \rangle$ not conservative always has to do with
hele in domain
Vir domain D doesn't have hole
Then If \vec{F} defed on a simply connected $D \subseteq R^2$, then
 \vec{F} conservative $\Leftrightarrow Py = Qx$