Lee 29
\# Green's Theorem
Notation Let c be piecewise smooth curve, simple, closed curve in \mathbb{R}^{2}, $\oint_{c} \vec{F} \cdot d r=\int_{c} \vec{F} \cdot d r$ in counterclockwise direction.
closed $=$ start and end at some pout
simple $=$ wo self intersectionclosed
simple
closed. not simple

Notice If \vec{F} cons,

$$
\oint_{c} \stackrel{\rightharpoonup}{F} \cdot d r=0 \text { by } F T L I
$$

Thu $\vec{F}=\langle P, Q\rangle$ in simply conn. region D in \mathbb{R}^{2}, then

$$
\oint_{\partial D} P d x+Q d y=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

Ex. $\vec{F}=\langle-y, x\rangle, C$ be unit disk

$$
\oint_{C} \vec{F} d r=\iint_{D}\left(Q_{x}, P_{y}\right) d A=\iint_{D}(-C-1) d A=2 \iint_{D} d A=2 \pi
$$

Proof (special case sketch)
Given $\vec{F}=\langle P, Q\rangle, Q_{x}-P_{y}$ measures rotation of vec field around point

WT measure

Break, into small prices

Inner ones cancel out

Approximate outer rotation

Now we prove Coreen's Thim for rectangle

$$
\begin{aligned}
& c_{c_{4}}^{\begin{array}{c}
c_{1} \\
c_{1} \\
{[a, b] \times[c, d]}
\end{array}} \begin{array}{l}
F=\langle P, Q\rangle \\
c_{2} \\
W T S
\end{array} \oint_{c} P d x+Q d y=\iint_{D} Q_{x}-P_{y} d A \\
& c=c_{1}+c_{2}+c_{3}+c_{4} \\
& \oint_{c} P d x+Q d y=\int_{c_{1}}+\int_{C_{2}}+\int_{c_{3}}+\int_{C_{4}} P d x+Q d y \\
& \text { c. } \quad r_{1}(t)=\langle t, c\rangle \\
& c_{2} \quad r_{2}(t)=\langle b, t\rangle \\
& -c_{1} \quad r_{3}(t)=\langle t, d\rangle \\
& \text { - } c_{a} \quad r_{4}(t)=\langle a, t\rangle \\
& L H S=\int_{a}^{b}\langle P(t, c), Q(t, c)\rangle \cdot r_{1}^{\prime}(t) d t+\int_{c}^{d}\langle P(b, t), Q(b, t)\rangle \cdot r_{2}^{\prime}(t) d t+ \\
& \int_{b}^{a}\langle P(t, d), Q(t, d)\rangle \cdot r_{3}^{\prime}(t) d t+\int_{d}^{c}\langle P(a, t), Q(a, t)\rangle \cdot r_{4}^{\prime}(t) d t \\
& =\int_{a}^{b}\langle P(t, c), Q(t, c)\rangle \cdot\langle 1,0\rangle d t+\int_{c}^{d}\langle P(b, t), Q(b, t)\rangle \cdot\langle 0,1\rangle d t+ \\
& \int_{b}^{a}\langle P(t, d), Q(t, d)\rangle \cdot\{1,0\rangle d t+\int_{d}^{c}\langle P(a, t), Q(a, t)\rangle \cdot\langle 0,1\rangle d t \\
& =\int_{a}^{b} P(t, c) d t+\int_{c}^{d} Q(t, d) d t+\int_{b}^{a} P(b, t) d t+\int_{d}^{c} Q(a, t) d t \\
& =\int_{a}^{b} P(t, c)-P(b, t) d t+\int_{c}^{d} Q(t, d)-Q(a, t) d t \\
& \text { RHS }=\iint_{D} Q_{x}-P_{y} d A=\int_{a}^{b} \int_{c}^{d}\left(Q_{x}-P_{y}\right) d x d y \\
& =\int_{a}^{b} \int_{c}^{d} Q_{x} d x d y-\int_{a}^{b} \int_{c}^{d} P_{y} d x d y \\
& \downarrow \text { by FTC } \\
& =\int_{a}^{b} Q(b, y)-Q(a, y) d y-\int_{a}^{b} P(x, d)-P(x, c) d x=\text { LHS }
\end{aligned}
$$

\# Flux version Green's Thy
Def $\oint_{c} \vec{F} \cdot \vec{N}$ ids is the flux integral $\int_{c} \vec{F} \cdot \vec{N}$ dos in counterdockuise direction.

measures net outflow in region enclosed by C

Th

$$
\oint_{\partial D}\langle P, Q\rangle \cdot \vec{N} d s=\iint_{D} \underbrace{\left(P_{x}+Q_{y}\right)}_{\text {outflow ot each point }} d A
$$

