Lee 30
\# Curl 4 Divergence
Def For rec field $\vec{F}=\langle P, Q\rangle$ in \mathbb{R}^{2}, the curl of \vec{F} is curl $\vec{F}=\left\langle 0,0, Q_{x}-P_{y}\right\rangle \leftarrow$ not rotation around point and the divergence
$\operatorname{div} \vec{F}=P_{x}+Q_{y} \leftarrow$ net outflow at point
Notice

$$
\begin{aligned}
& \oint_{\partial D} \vec{F} \cdot d r=\iint_{D} Q_{x}-P_{y} d A=\iint_{D} \text { curl } \vec{F} \cdot \vec{k} d A \\
& \oint_{\partial D} \vec{F} \cdot \vec{N} d s=\iint_{D} P_{x}+Q_{y} d A=\iint_{D} \operatorname{div} \vec{F} d A
\end{aligned}
$$

\# Extended Green's Theorem
The We can replace the assumption that D is simply connected with the assumption that D has fuitely many holes Viz. both hold with new assumption
Derivation of ∂D by example
Suppose: We can. Then do both on D_{1} and D_{2}. Notice boundry cancels out

not simply

two simply
convected

Rotation

Flow

Then

$$
\begin{aligned}
& \partial D=C-C^{\prime} \\
& \oint_{\partial D} F \cdot d \vec{r}=\oint_{C} F \cdot d \vec{r}-\oint_{C} F \cdot d \vec{r}
\end{aligned}
$$

Ex. show $F=\left\langle\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}\right\rangle$ on any simple closed C that does 4 contain origin satisfies

$$
\oint_{c} \vec{F} \cdot d r= \begin{cases}0 & \text { if } C \text { doesn't surround }(0,0) \\ -2 \pi & \text { else }\end{cases}
$$

Case (1) if C doesn't surround $(0,0)$

By ordinary Green's

$$
\begin{aligned}
\oint_{C} F \cdot d \vec{r} & =\iint_{D} Q_{x}-P_{y} d A \\
& =\iint_{D} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}-\frac{x^{2}-y^{2}}{x^{2}+y^{2}} d A \\
& =\iint_{D} 0 d A \\
& =0
\end{aligned}
$$

Case (1): if C contains origin

Let C ' be a circle inside C around origin viz. radius ε. Let D be inside C outside C^{\prime}. By extended Green's

$$
\begin{aligned}
& \text { By extended Green's } \\
& \oint_{\partial D} F \cdot d \vec{r}=\iint_{C} \vec{F} \cdot d \vec{r}-\iint_{C} \cdot \vec{F} \cdot d \vec{r}=0
\end{aligned}
$$

$$
\Rightarrow \iint_{C} \vec{F} \cdot d \vec{r}=\iint_{C} \cdot \vec{F} \cdot d \vec{r}
$$

Pamam C as $\vec{r}(t)=\langle\cos t, \sin t\rangle \leftarrow$ scaling doesn't matter since things same

$$
\begin{aligned}
\oint_{c} \vec{F} \cdot d r & =\iint_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot r^{\prime}(t) d t \\
\cdots & =-2 \pi
\end{aligned}
$$

