\square
\# Stoke's theorem
Recall circulation Greens $\oint_{\partial D}(P, Q) \cdot \vec{T} d s=\iint_{D}$ curl $\vec{F} \cdot \hat{K} d A$
Notice $\iint_{0}($ curl $\vec{F}) \cdot \hat{k} d A$ is a surf integral for $\vec{r}(t)=\langle x, y, 0\rangle$ as S for $(x, y) \in D$ so $\iint_{D} \operatorname{curl} \mid \vec{F} \cdot \hat{k} d A=\iint_{S} \operatorname{curl} \vec{F} \cdot d S$

Thu If \vec{F} is a C^{\prime} vec field in \mathbb{R}^{3} and S is a piecewise smooth oriented surf with boundary ∂S, then

$$
\int_{\partial S} \stackrel{\rightharpoonup}{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \stackrel{\rightharpoonup}{F} \cdot d \stackrel{\rightharpoonup}{S}
$$

[proof same as Green's]

$$
\begin{aligned}
& \text { Ex. } \vec{F}=\langle z, x, y\rangle \quad c^{(0,0,1)}\left\langle\bigodot_{(3,0,-2)}^{(0,1,2)}\right. \\
& \int_{c} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Parametrise S as $\vec{r}(x, y)=\langle x, y, \mid-x-y\rangle$ for $(x, y) \in \prod_{(0,0)}^{(0,1)}$

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{S} \text { curl } \vec{F} \cdot d \vec{S} \\
& =\iint_{S}\langle 1,1,1\rangle \cdot d \vec{S} \\
& =\iint_{D}\langle 1,1,1\rangle \cdot\left(\vec{r}_{x} \times \vec{r}_{y}\right) d A \\
& =\iint_{D}\langle 1,1,1\rangle \cdot(\langle 1,0,-1\rangle \times\langle 0,1,1\rangle) d A \\
& =\iint_{D} 1 d A \\
& =3 / 2
\end{aligned}
$$

\# Independence of surface
The For vec field with curl \vec{F}, S and S^{\prime} oriented surfaces with same boundary $\partial S=\partial S^{\prime}$, $\iint_{s} \operatorname{curl} \overrightarrow{\mathrm{~F}} d \overrightarrow{\mathbf{S}}=\iint_{s^{\prime}} \operatorname{curl} \overrightarrow{\mathrm{F}} d \overrightarrow{\mathbf{S}}$ so we only care about curl \& boundary
Ex.

Core If $2 s=\varnothing$, then \iint_{s} curl $\vec{F} \cdot d \vec{s}=0$
Fact If S closed, $\partial S=\varnothing$
Fact div curl $\vec{F}=0$

