

Prerequisits : combinatorics, calculus...
Homework: digest, develop gut feeling for probability
\# Topic specifies

- Combinatorics problems tricky to translate into math
\# How to follow class
- Go lecture
- Review notes, before next lee i before homework
- Some memorisation
- Stuck \rightarrow try, little hints
\# Probability Space
all possible outcome \} ~ P r o b a b i l i t y ~ d i s t r i b u t i o n ~ a k a ~ m e a s u r e ~

Collection of subsets of Ω, "events", often $F=\beta(\Omega)$, but not always depending on various reasons

- relevance, maybe only some $F \subset P(\Omega)$ is relevant
- some not admissible for technical reason

$$
\begin{aligned}
P: F & \rightarrow[0,1] \\
A & \mapsto P[A]
\end{aligned}
$$

with properties

1. $P[\Omega]=1$
2. A, B disjout $\Rightarrow A \cap B=\varnothing$
and $P[A \cup B]=P[A]+P[B]\}$ addictivity
: Cont of time)

Ex Binary experiment Rain or No Rain

$$
\Omega=\{0,1\}
$$

R	N
1	0

Ex A die 1 or 2 or 3 or 4 or 5 or 6 $\Omega=\{1, \ldots, 6\}$
Event $A=\{2,4,6\} \subseteq \Omega$
If any of 2,4,6 occurred, we say "A occurred"

Ex Stock price

$$
\Omega=\left\{f(t) \mid f:[0,1] \rightarrow \mathbb{R}^{+}\right\}
$$

Lee 2
\# Count.
requirements
Ω
F
$\phi, \Omega \in F \ldots$
P
σ-addictivity \leftarrow like adding area, volume, mass
$L P[A \cup B]=P[A]+P[B]$ if $A \cap B=\phi$
\rightarrow Mass analogy of probability \leftarrow Both can have uneven distribution both addictive
We require:
\& Numberable by natural number
P is Countable addictivity (aka σ-addictivity)
If A_{1}, A_{2}, \ldots disjout, then $P\left[\bigcup_{k=1}^{\infty} A_{k}\right]=\sum_{k=1}^{\infty} P\left(A_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P\left(A_{k}\right)$
P is probability measure viz. $P[\Omega]=1$
F is approprite subset of $P(\Omega) \ldots$ requires $\phi, \Omega \in F$ but also:

- closed w.r.t countably many set theory operations

个 (on elems of F)
Call it " σ-algebra" or " σ-field"

Hymn ... why not just model with just Ω and P ?
\# Discrete models

Then... P is completely determined by all the p_{k}
Take any event $A, P(A)=P\left[\bigcup_{k: \omega_{k} \in A}\left\{\omega_{k}\right\}\right]=\sum_{k: \omega_{k \in A}} P\left[\left\{\omega_{k}\right\}\right]$

Ex. flip coin n times
$\Omega=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right) \mid \omega_{i} \in\{0,1\}\right\}=\{0,1\}^{n}$
$F=\beta(\Omega) L_{\text {binary seq of } \mathrm{len} n}$
P depends on the coin and how to throw \rightarrow fair cont, independent throws \rightarrow normal then $P[\{\infty\}]=2^{-n}$, uniform dist.

Lee 3
\# Discrete model (cont.)

Ex. Fair indep. coin flip N times $\quad-\quad p_{k}=\frac{1}{2^{N}}$

- by symmetry: each outcome equally likely \Rightarrow uniform dist.
- by $\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \cdots \cdot \frac{1}{2}}_{N \text { times }}$

Def For $A, B \in F, A$ and B are indep. $\Leftrightarrow P(A \cap B)=P(A) P(B)$
\# Modified model - non-discrete
Set $N=\infty, \quad \Omega=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in\{0,1\}\right\} \leftarrow$ Not countable

$$
P[\varepsilon \omega, \xi]=\underset{\substack{\uparrow \\ 0}}{ }=\lim _{N \rightarrow \infty} \prod_{i=1}^{N} \frac{1}{2}
$$

But we also want $\sum P[\{w\}]=$,
Ω not countable, this doesn't make sense
Aside proving Ω uncountable. Suppose it's countable so $\Omega=\sum \omega_{1}, \ldots 3$ Let y s.t. $y \neq \omega_{k}$ for all $\omega_{k} \in \Omega$ (just flip k th bit of ω_{k})

So we can't define P just using singletons $P[\{w\}$,$] .$ \rightarrow Define it in terms of subset of $\Omega 2$. eg. finite prefixes

$$
\left.\begin{array}{l}
P[\underbrace{\left.\left\{\omega=\left(x_{1}, \ldots\right) \mid x_{1}=1\right\}\right]}_{\text {Alt not. }(1, *, *, \ldots)}=\frac{1}{2} \\
P[(1,0, *, 1, *, \ldots)]=\frac{1}{8}
\end{array}\right\}
$$

these etc. implies nuque P

But $F=\rho(\Omega)$ also breaks here
Instead, $F=\sigma\left(\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid n \geqslant 1\right\}\right)$
Ex. Contimuons roulette

$$
\begin{aligned}
& G \cdot r=r \in[0,1) \\
& \Omega=[0,1) \\
& F=[\cdots ?=\mathbb{Q} \text { cambable } \\
& \left.P[\varepsilon r\}]=0 \quad P\left[U \varepsilon q_{k}\right\}\right]=\sum^{\infty} 0=0 \\
& P[\mathbb{Q}]=0=b=a \\
& P[c a, b]]=b-a
\end{aligned}
$$

Lee 4
\# Cont (random walk (RW))
Ex. Consider particle mong +1 or -1 on number lime determined by independent fair coin toss

$$
\begin{aligned}
\Omega= & \left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \mid \omega_{i}=\{-1,1\}\right\} \\
= & \{-1,1\} \infty \\
= & \left\{\omega=\left(\omega_{0}, \omega_{0}, \cdots\right) \mid \omega_{i} \in \mathbb{Z}\right. \\
& \left.\omega_{0}=0,\left|\omega_{i}-\omega_{i+1}\right|=1\right\}
\end{aligned}
$$

Notation, random variable
$X_{\circ}(\omega):=0$ - not random yet
$X_{k}(\omega):=\omega_{k} \quad$ for $k \geqslant 1$
L random variable for direction taken at step k. locks like a function!
\# Random variable
Def deterministic function $X: \Omega \rightarrow\left(\mathbb{R}\left|\mathbb{R}^{d}\right| \ldots\right)$
Notice ... $\times(\omega)$
this is random?!
So $\left\{\begin{array}{l}S_{0}(\omega)=0 \\ S_{n}(\omega)=\sum_{k=1}^{n} x_{k}(\omega)\end{array}\right.$
Ex. What's probability $P\left[S_{n}=m\right]$ f.s. $-n \leqslant m \leqslant n$?
${ }^{2 n f}{ }^{\prime} T_{2 k} \rightarrow P\left[S_{2}=1\right]=0 \quad$ there's parity going on What about $P\left[S_{2 n}=2 m\right]$?

Suppose we step down k times in
Notice the path rectangle, $S_{2 n}=2 n-2 k$

We want $S_{2 n}=2 n-2 k=2 m$

$$
\Rightarrow \quad k=n-m
$$

So we want ω s.t. $\left(\omega_{1}, \ldots, w_{2 n}\right)$ has k step downs.
So $\binom{2 n}{n-m}$ out of $2^{2 n}$ possible prefixes
But ... $\left\{-1,1 \xi^{N} \ldots \quad N \neq 2 n\right.$
Well we just want $A \subseteq \Omega$ st. A has the prefixes we wont. Say $2 n=4$ e.g. $\quad A_{j_{1}, j 2}=\{(1,-1,1,-1, *, *, \ldots)\}$ for $1 \leqslant j 1<j 2 \leqslant 2 k$ $P\left[A_{j_{1}, j_{2}}\right]=\frac{1}{2^{2 n}} . \quad K_{j_{1}}=2, j_{2}=4$ in example

$$
\begin{aligned}
& P[\underbrace{S_{2 n}=2 m}_{11}]=\sum_{j 1 \ldots j k} P\left[A_{j 1 \ldots j k}\right]=\sum_{j \ldots j k} \frac{1}{2^{2 n}} \\
& =\frac{1}{2^{2 n}} \sum_{j \cdots j k} 1 \\
& 1 \leqslant j<\cdots<j k \leqslant 2 n \\
& \text { disiout union } \\
& =\left(\frac{1}{2^{2 n}}\right)\binom{2 n}{k}
\end{aligned}
$$

\# Independent
Thy \mathbb{R} random vars X and Y independent
$\Leftrightarrow \forall A, B \subseteq \mathbb{R}$, the event $\{x \in A \xi,\{y \in B\}$ independent

$$
\{w \mid X(w) \in A\}
$$

Lee 5
\# Independent
Def $\quad \forall k, l, x, y, P\left[X_{k}=x, X_{l}=y\right]=P\left[X_{k}=x\right] P\left[X_{l}=y\right]$.
More generally, $X_{k_{1}}, \ldots, X_{k_{l}}$ independent if

$$
P\left[\underset{\downarrow}{x_{k}} \in A_{1}, \ldots, x_{k l} \in A_{l}\right]=\prod P\left[x_{k_{j}}=A_{j}\right] \quad \forall k_{1} \ldots k_{l}, A_{1} \ldots A_{l}
$$

Recall RW k_{1}-th flip

$$
S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)
$$

Write S. (w) to not specify k, so it's a random path.
\# Usefulness of looking at infuite system
Given longe enough system and sufficient independence between components, something depending on many of these systems may become deterministic

Ex. Air bumping almost randomly \rightarrow Statistical mechanics most moledules don't interact. high independence

Pressure, temperature ... stable Almost deterministic

Ex. Flip fair coin enough of tine $\rightarrow 50 \%$ head 50% tail

$$
\frac{1}{n} \sum_{\substack{n}}(w) \rightarrow 0
$$

... What about tolerance $T=\left\{\left.\omega| | \frac{1}{n} \sum_{k}^{n} S_{k}(\omega)-0 \right\rvert\, \leq \underset{\substack{k}}{\delta}\right\}_{>0}$
$\lim _{n \rightarrow \infty} P[T]=1$

$$
\text { (} \lim _{n \rightarrow \infty} P[T]=1
$$

Thy This is the weak law of large number (WLLN)
The strong LLN (sLLN)
Consider $N=\infty$ instead...

$$
P\left[\left\{\omega \left\lvert\, \frac{1}{n} S_{n}(\omega) \underset{n \rightarrow \infty}{ } 0\right.\right\}\right]=1^{\text {so it becomes deterministic }}
$$

so fluctuation in $S_{n}(w)$ is lower than n

Consider

\# Consequences of σ-addictivity
Suppose $A, B \in F$ in a (Ω, F, P) system, then:

1. $B \subseteq A \Rightarrow P[A \backslash B]=P[A]-P[B]$

$$
B \underline{\cup}(A \mid B)=A
$$

2. $B \subseteq A \Rightarrow P[B] \leqslant P[A]$, so P is monotonically increasing
3. $P\left[A^{\prime}\right]=P[\Omega \backslash A]=1-P[A]$
4. $P[A \cup B]=P[A]+P[B]-P[A \cap B]=P[A \cup(B \backslash A)]$
5. P is monotoneons contimions. Let $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq \Omega$

$$
P\left[\bigcup_{k=1} A_{k}\right]=\lim _{k} P\left[A_{k}\right]
$$

Lee 6 Disjoint Finite
\# Uniform dist for diajount finite
Ω is aisjout finite
P is uniform dist so $P[\{\omega\}]=\frac{1}{|\Omega|}$
So $P[A]=\sum_{\omega \in A} P\left[\{\omega \xi]=\frac{1}{|\Omega|} \sum_{\omega \in A} 1=\frac{|A|}{|\Omega|}\right.$
\# Permutation
Ex. arrange 52 cards. Let $n=s 2$
Mathematically ... we can model by $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$, each π being a permutation.
orig position new position
Notice π is bijective.
Then set of all perms is $S_{n}=\{\pi:\{1,2, ., n\} \rightarrow\{1,2, ., n\} \mid \pi$ bjective $\}$

$$
\left|S_{n}\right|=n!
$$

\# Power set size

$$
\begin{aligned}
& |P(\{1,2, \ldots, n\})|=2^{n} \\
& P([n]) \stackrel{\text { bject }}{\longleftrightarrow}\left\{\begin{array}{l}
\left\{0,13^{n}\right. \\
\\
\\
\mid\left\{0,13^{n} \mid=2^{n} .\right.
\end{array}\right.
\end{aligned}
$$

\# Choosing size k subset

$$
|\xi A \subseteq[n]| \quad|A|=k \xi \mid
$$

$n(n-1) \cdots(n-(k-1))=\frac{n!}{(n-k)!}$? Nope... we picked in order

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!k}
$$

Ex. choosing two subsets st. A_{1}, A_{2} are distinguishable

$$
[n]
$$

$$
A_{1} \underset{k_{1}}{ } \quad A_{2} \underset{k_{2}}{ }
$$

$$
\begin{aligned}
\binom{n}{k_{2}} \cdot\binom{n-k_{1}}{k_{2}} & =\frac{n!}{\left(n-k_{1}\right)!k_{1}!} \frac{\left(n-k_{1}\right)!}{\left(n-k_{1}-k_{2}\right)!k_{2}!} \\
& =\frac{n!}{\left(n-k_{1}-k_{2}\right)!k_{2}!k_{1}!} \\
& =\binom{n}{k_{1}, k_{2}} \div \text { Notation to choosing }
\end{aligned}
$$

But...
\# Partitioning
Ex. partition [7] into 4 non-empty, non-numerated parts so we need 4 disjoint subsets that union to the set Case on possible partition sizes

$$
\begin{aligned}
& 1,2,2,2 \Rightarrow\binom{7}{2,2,2} \\
& 4,1,1,1 \Rightarrow\binom{7}{4} \\
& 3,2,1,1 \Rightarrow\binom{7}{3,2}
\end{aligned}
$$

Lee 7
\# Partition continued
Not enumerated
Q : how many ways to split n things into k non-empty partitions we want k non-empty subsets with non-1 size that are disjoint but union to everything
...th oh... counting this is hopeless. brute force. No closed form solution.
reduction: figure out all possible size distribution, count each.

$$
\begin{aligned}
& 1,2,2,2 \Rightarrow\binom{7}{2,2,2} \text { or }\left(\begin{array}{lll}
7 & \\
2 & 2 & 2
\end{array} 1\right) \frac{1}{3!} \\
& \left.4,1,1,1 \Rightarrow\binom{7}{4} \quad \text { or } \quad\left(\begin{array}{lll}
7 & \\
4 & 1 & 1
\end{array}\right) 1.1\right) \frac{1}{3!} \\
& 3,2,1,1 \Rightarrow\binom{7}{3,2} \text { or }\binom{7}{3,2,1,1} \frac{1}{2!}
\end{aligned}
$$

Now look at random partitions of $n=7 \quad k=4$.
$\Omega=$ all the possible partitions $\quad|\Omega|=350=\Sigma 0$
$P=$ uniform dist
Q: What's $P\left[\left\{_{1}, 2,3\right\}\right.$ in same partition $]$

$$
\begin{aligned}
& 3,2,1,1 \Rightarrow\binom{4}{2} \\
& 4,1,1,1 \Rightarrow\binom{4}{1}
\end{aligned}
$$

\# Card games
Pack of 52 cards $\{1, \ldots, 52\}$
Suppose 4 players each 13 cards whether to enumerate depends on context?
Ω shuffle $=$ all perms of the 52 cards

$$
P \text { shuffle }=\text { inform } P[\xi \omega, \xi]=\frac{1}{52!}
$$

Let $K=$ all hearts.

$$
P\left[\underset{\text { hand of } 2^{\text {nd }} \text { plouger }}{H_{2}(\omega)}=K\right]=P[\underbrace{\left.\left\{\omega \mid H_{2}(\omega)=k\right\}_{1}\right]}_{\text {call it } A}
$$

$H_{2}: \Omega \rightarrow\left\{\begin{array}{l}\text { all subsets } \\ \text { of size } B\end{array}\right\}$
$=\frac{|A|}{|\Omega|}$

Cometing

$$
=\frac{39!13!}{51!}
$$

Lee 8
\# Card shuffling (cont.)
$\Omega=\{$ permutations of deck of 52 cards 3
$P=$ miform dist.
Consider the dist. of A_{s}.
Most likely:
$\rightarrow \mid-1-1-1$?
\rightarrow 2-1-1-0 ? \leftarrow The actual typical... higher entropy
Consider $\quad A=\left\{2-1-1-0\right.$ distribution of $\left.A_{s}\right\}$
Sysmetically counting

Concrete	Players	1	2	3	4	Symbd
toy ex.	Landes	$\checkmark Q$	\diamond		8	γ

Notice $B_{r} \subseteq A \subseteq \Omega$

$$
P\left[B_{\gamma}\right]=\frac{\left|B_{\gamma}\right|}{52!}=\frac{\binom{13}{2} \cdot 2 \cdot\binom{13}{1} \cdot\binom{13}{1} \cdot 48!}{52!}
$$

Consider Player 1. $\left.\begin{array}{c}13 \\ P\end{array} \begin{array}{c}13 \\ 2\end{array}\right) \cdot 2$ ways to insert other cards

$$
\begin{array}{lll}
& 3 & \binom{13}{1}
\end{array}
$$

Let Γ be all possible symbols wee γ Then $A=\bigcup_{Y \in T} B_{\gamma}$

$$
P[A]=\sum_{r \in \Gamma} P\left[B_{r}\right]=|\Gamma| P\left[B_{r}\right] .
$$

To count $|\Gamma| \ldots$

1. Choose who gets $2 A$'s and who gets 0 \checkmark Choose who gets 2
Choose who gets 0

$$
\binom{4}{1}\binom{3}{1}=12
$$

2. Decide where A's go
L choose 2 for one player
L permute other two / choose I for another

$$
-\binom{4}{2}\binom{2}{1}=12
$$

$$
\begin{aligned}
& \text { So }|T|=12^{2} \\
& P[A]=12^{2} \cdot P\left[B_{\gamma}\right]=\frac{13^{3} 12^{3} 48!}{52!} \approx 0.57
\end{aligned}
$$

Lee 9 Conditional probability

* Conditional prob

Given a prior model (Ω, F, P)... we know nothing
... now suppose we saw $B \leqslant \Omega$ occured... build a posterior $\left(\Omega^{\prime}, F^{\prime}, P^{\prime}\right)$

$$
\begin{aligned}
& \Omega^{\prime}=B \\
& F^{\prime}=\{A \cap B \mid A \in F\} \quad \text { Let } A^{\prime}=A \cap B \\
& P^{\prime}\left(A^{\prime}\right)=\frac{P\left(A^{\prime}\right)}{P\left(\Omega^{\prime}\right)}=\frac{P(A \cap B)}{P(B)}
\end{aligned}
$$

Note this requires $P(B)>0$

But that's complicated... try:
S New posterior model, only update F (Ω, F, Q)
Def $Q(A)=\frac{P(A \cap B)}{P(B)}=P(A \mid B)$
Claim Q is prob. measure

$$
\begin{aligned}
& Q(A \mid B) \\
& \begin{aligned}
Q(\Omega)= & \frac{P(\Omega \cap B)}{P(B)}=1 \\
Q\left(\frac{U}{k} A_{k}\right) & =\frac{1}{P(B)} P\left(B \cap \frac{U}{k} A_{k}\right) \\
& =\frac{1}{P(B)} P\left(\frac{U}{k} A_{k} \cap B\right) \\
& =\frac{1}{P(B)} \sum_{k} P\left(A_{k} \cap B\right) \\
& =\sum_{k} \frac{P\left(A_{k} \cap B\right)}{P(B)}
\end{aligned}
\end{aligned}
$$

Nota $P(\cdot \mid B)$ is conditional prob measure of P on B
Consq $P\left(B^{c} \mid B\right)=0$

$$
\begin{aligned}
& P(A \cup C \mid B)=P(A \mid B)+P(C \mid B)-P(A \cap C \mid B) \\
& P\left(A^{c} \mid B\right)=1-P(A \mid B) \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A \cap B)=P(A \mid B) P(B) \\
& \Leftrightarrow P(B \mid A)=P(B \cap A)=P(B \mid A)=P(A) \\
& \Rightarrow P \mid B) \frac{P(B)}{P(A)}
\end{aligned}
$$

Ex. weather.
$A=20 \%$ rain predicted yesterday
$B=$ cloudy

$$
P(A \mid B) \xrightarrow{\text { probably }} P(A)
$$

\# More partitioning

$$
\begin{aligned}
& \Omega=\frac{U_{k}^{N} B_{k}, N \leqslant \infty}{A} \begin{aligned}
A & =\frac{U}{k} A \cap B_{k} \\
P(A) & =\sum P\left(A \cap B_{k}\right) \\
& =\sum P\left(A \mid B_{k}\right) P\left(B_{k}\right)
\end{aligned}
\end{aligned}
$$

So having exhaustue scenarios B_{k} s and $P\left(A T B_{k}\right)$ can help find $P(A)$
weighted avg of conditional props.
This looks like ... $\sum_{k} P_{k} \cdot a_{k}=1$
weighted average
Now what if we want $P\left(B_{j} \mid A\right)$ if we know $P\left(A \mid B_{j}\right)$. \int natural question: which partition are we in if we observed A ?

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{P(A)}=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum P\left(A \mid B_{k}\right) P\left(B_{k}\right)}
$$

Ex. Getting tested positive on some medical test
\rightarrow Look up reliability of the test

Pretend we don't know test result yet. We want to find $P(D \mid T)$ no disease $D^{c} \underbrace{}_{T}$| U |
| :--- | positive negative

Lee 10 Conditional Prob. F Random Variable
\# Recall disease test
Ex. Getting tested positive on some medical test \rightarrow Look up reliability of the test

Pretend we don't know test result yet. We want to fund $P(D \mid T)$ | disease D | |
| ---: | :--- |
| no disease D^{c} | | positive negative

$\left.\begin{array}{rl}\text { Realiability } P(T \mid D) & =99 \% \\ \text { Specificity } P\left(T^{c} \mid D^{C}\right) & =97 \% \\ P(D) & =0.1 \%\end{array}\right]$ from googling

$$
\begin{aligned}
P(D \mid T)=\frac{P[D \cap T]}{P[T]} & =\frac{P(T \mid D) P(D)}{P(T)} \\
& =\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P\left(T \mid D^{c}\right) P\left(D^{c}\right)}
\end{aligned}
$$

$\approx \frac{1}{31} \leftarrow$ That's low. Usually they send you to
The two tests are ideally udependent but usually not really.

Intuition

\# Consider 2 tests. T_{1}, T_{2}

$$
P\left(T_{2} \mid T_{1}\right)>P\left(T_{2}\right)
$$

Usually more likely
to have disease so
$2^{\text {nd }}$ test more likely
to be positive
Assume T_{1}, T_{2} independent w.r.t. $P(\cdot \mid D)$
\# Random variable \& their dist (denote μ_{x})
Random variable : function $X: \Omega \rightarrow S$ for some set S

$$
\Omega \xrightarrow{X} S \quad \text { eg. } \quad \Omega \xrightarrow{X} \mathbb{R}
$$

Let g be σ-fields on S
Notate.

$$
\begin{aligned}
P[x \in G]= & P[\{\omega \mid x(\omega) \in G 3] \\
= & \frac{P\left[x^{-1}(G)\right]}{} \\
& \text { Prob of all } \omega \text { that maps } \\
= & \mu_{x}(G)
\end{aligned}
$$

This is itself a prob measure on (s, g)

(s, g, μ_{x}) acts like another random system
\# Special case : X is discrete
X discrete $\Leftrightarrow\{X(w) \mid w \in \Omega\}$ is countable

$$
=\left\{x_{1}, \ldots, x_{n}\right\} \text { are possible values }
$$

Naturally we consider $P\left[X_{k}=x_{k}\right]=P_{k}$

Notice $X=x_{k}$ disjout for $k s$ and every ω goes to some x_{k}.
So $\frac{U}{k>1}\left\{X=x_{i}\right\}=\Omega \quad \Rightarrow \quad \sum_{k} p_{k}=1$

Discrete point measure

then $\mu_{x}(G)=\sum_{\substack{k, x_{k} \in G}} P\left[X=x_{k}\right]=\sum_{\substack{k, x_{k} \in G}} P_{k}$
\# Binomial Dist.
$B(n, p)$. Consider n coin flips with head prob p.

$$
x_{1} \quad \ldots x_{n}
$$

$$
X_{k}<\begin{array}{cc}
1 & p \\
0 & 1-p
\end{array}
$$

Sum $S_{n}(\omega):=\sum_{i=1}^{n} X_{i}(\omega) \quad \leftarrow$ \# of I's in n flips
Want $P\left[S_{n}=k\right] \quad$ Well... $k \in S_{n}=\{0,1, \ldots, n\}$
each outcomes have different prob

Notate $S_{n} \sim B(n, p)$

Lee 11
\# RV cont.

$$
\begin{array}{ll}
(\Omega, F, P) & G \xrightarrow{x} S \\
\left.\mu_{x}(G)=P[x \in G]=P[\varepsilon \omega \mid x(\omega) \in G\}\right]=P \cdot X^{-1}(G)
\end{array}
$$

$S \supseteq G \in G \quad \rightarrow \quad \mu_{x}$ is a prob measure on $(S, G) \begin{aligned} & \text { so transfer } \\ & (\Omega, F, P)\end{aligned}$
\triangle Note this requires $\forall G \in G, X^{-1}(G) \in F$. This is usually assumed.
Def μ_{x} is the distribution of X w.r.t. P and a prob. measure on (S, G)

Def X is discrete $\Leftrightarrow\{x(\omega) \mid \omega \in \Omega\}=\left\{x_{1}, \ldots, x_{n}\right\} \leq S$ is countable
Then it's sufficient to look at prob of singletons

$$
\begin{aligned}
& \mu\left(\xi x_{k} \xi\right)=P\left[x=x_{k}\right]=P_{k} \\
& \Rightarrow P[x \in G]=P\left[\underset{x_{k} \in G}{\left.\bigcup_{\substack{k}}\left\{x=x_{k}\right\}\right]=\sum_{x \in G} P[\{x=x\}]=\sum_{\substack{k \\
x_{k} \in G}} P_{k}}\right.
\end{aligned}
$$

\# Example dist.
Distribute 13 of 52 cards to 1 player P_{1}, consider the hand
$\Omega=\{$ all perms of 52 cards $\}$

$$
F=\{A \leq\{1, \ldots, 52\}| | A \mid=13\}
$$

$X: \Omega \rightarrow S$ by taking first 13 cards, putting it inside a set, and giving it to P_{1}.

Want μ_{x}. Let A be some subset of $\varepsilon_{1}, \ldots, 523,|A|=13$

$$
\begin{gathered}
\mu_{x}(\xi A \xi)=\frac{P[x=A]}{P=\frac{X=A}{\mid 11}}=\frac{13!39!}{|\Omega|}=\frac{1}{\binom{52}{13}} \\
P[\{\omega \mid X(\omega)=A\}]
\end{gathered}
$$

But any such A will yield this result. So μ_{x} is uniform.
\# Ex. random vars
(1) binomial $B(n, p)$
$x_{1} \ldots x_{n}$
$\checkmark \leftarrow$ independent, identical dist.

$$
\begin{aligned}
& \text { id } \sim B(p)=<_{0}^{1} p \\
& * B(1, p) \\
& S_{n}=\sum_{k}^{n} x_{k} \quad P\left[S_{n}=k\right]=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

(2)

$$
x_{1} x_{2} \ldots \quad \quad i d \sim B(p)
$$

Index of the furs 1
$T(\omega):=\min \left\{k \geqslant 1 \mid X_{k}(\omega)=1\right\}$ Waiting time for first success

$$
\begin{aligned}
& 00010110 \ldots \\
& T(\omega)=4=\min \{4,6,7, \ldots\}
\end{aligned}
$$

Notice $T(\omega) \in \mathbb{N}^{+}$

$$
\begin{aligned}
\mu_{T}(\{k\})=p_{k} & =P[T=k] \\
& \left.=P\left[\xi x_{1}=0\right\} \cap\left\{x_{2}=0\right\} \cap \ldots \cap\left\{x_{k-1}=0\right\} \cap\left\{x_{k}=1\right\}\right] \\
& \left.=P\left[\xi x_{1}=0\right\}\right] P\left[\left\{x_{2}=0\right\}\right] \ldots P\left[\left\{x_{k-1}=0\right\}\right] P\left[\left\{x_{k}=1\right\}\right] \\
& =(1-p)^{k-1} P
\end{aligned}
$$

Sanity check all p_{k} sum up to $1: \sum_{k \in \mathbb{N}^{+}}(1-p)^{k-1} p$
(3) Negative Binomial

$$
x_{1} \ldots x_{n} \quad \text { iid }<\begin{array}{cc}
1 & p \\
0 & 1-p
\end{array}
$$

Fix $1 \leq n$.

$$
\begin{aligned}
& 00100101 \\
& \text { want } 2 \text { suck before } k
\end{aligned}
$$

$T(\omega):=$ time until $n^{\text {th }}$ success
Want $P\left[T_{n}=k\right]$ for some $k \geqslant n$.

$$
P\left[T_{n}=k\right]=P^{n}(1-p)^{k-n}\binom{k-1}{n-1}
$$

(4) Poison dist.

$$
x=\{0,1,2, \ldots\}
$$

$$
\text { Poison (} \lambda) \quad P[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Lee 12 Expected Value
Given some discrete $R V \quad X \in \mathbb{R}$.
Idea: wont to replace X with a single, deterministic number. simplification, reduction

* Attempt 1 - weighted an

$$
W(x)=p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+p_{4} x_{4}=\sum_{k} p_{2} x_{k}
$$

weighted aug
\# Attempt 2 - prediction with least square error
Prediction $=b \Rightarrow$ Error $=|X(\omega)-b|$
want $\min _{b \in \mathbb{R}}|x(w)-b|$

Try $\min _{b \in \mathbb{R}} w\left(|x(w)-b|^{2}\right)$
Then the minimiser b_{0} is optimal pred.
Fact b_{0} is unique
\# Attempt 3 - statistics
Take many samples X_{1}, X_{2}, \ldots id with $X_{4} \sim X$
Take average $\quad \frac{1}{n} \sum_{k=1}^{n} X_{k}(\omega)$
By low of lange numb...

$$
P\left[\left\{\omega \left\lvert\, \frac{1}{n} \sum_{k=1}^{n} X_{k}(w) \rightarrow c\right.\right\}\right]=1
$$

converges to some constant with prolsobility 1
\# Expected val
Turns out attempts $1 \equiv 2 \equiv 3$. Define $\mathbb{E}[X]=w(X)=b_{0}=c$
\# Properties of expected val
Consider $\mathbb{E}[\cdot]$ to be fume on $R V_{s}$

$$
\mathbb{E}[\cdot]:\left\{R V_{s}\right\} \rightarrow[-\infty, \infty]
$$

Note not every RV has exp. val. eg. when we need $-\infty+\infty$

1. Exp. val. is extension of prob. measure

Let $A \in F, \quad I_{A}(\omega)=<_{0}^{1} \quad$ if $\omega \in A \quad \leftarrow$ indicator $R V$

$$
\begin{aligned}
\mathbb{E}\left[1_{A}(w)\right] & =1 \cdot P\left[I_{A}=1\right]+0 \cdot P\left[I_{A}=0\right] \\
& =P[A]
\end{aligned}
$$

So ($\Omega, F, P)$ automatically generates \mathbb{E}
 carry over :

- σ-additivity
- monotone cont.

2. $\mathbb{E}[\cdot]$ is linear

$$
\begin{aligned}
\left(\begin{array}{l}
\mathbb{E}[X+Y]=\mathbb{E}[X] \\
\mathbb{E}[c X]= \\
\underset{\text { Proof }}{ }[\mathbb{E}[X+Y[Y]
\end{array}\right. & \sum_{z \in \operatorname{Im}(X+Y)} Z \cdot P[X+Y=z] \\
& =\sum_{\substack{x+y=z \\
x \in \operatorname{Im} x \\
y \in \operatorname{Im} Y}} z \cdot P[X=x, Y=y] \\
& =\sum_{\substack{x \in \operatorname{Im} X \\
y \in \operatorname{Im} Y}}(x+y) P[X=x, Y=y] \\
& =\sum_{x} \sum_{y}(x+y) P[X=x, Y=y] \\
& =\sum_{x} x \sum_{y} P[X=x, Y=y] \\
& \vdots \\
& =\mathbb{E} X+\mathbb{E} Y
\end{aligned}
$$

3. $\forall \omega, X(\omega) \geqslant Y(\omega) \Rightarrow \mathbb{E} X \geqslant \mathbb{E} Y$

Proof $\mathbb{E}[\underbrace{[X-Y}_{\geqslant 0}]=\mathbb{E} X-\mathbb{E} Y$
4. $\mathbb{E}[\cdot]$ monotone cont.

Thu $\left(0 \leqslant X_{k}(\omega) \nearrow \forall \omega\right) \Rightarrow \mathbb{E}\left[\lim \uparrow X_{n}(\omega)\right]=\lim \mathbb{E}\left(X_{n}\right)$

\# E of binom dist.

$$
\begin{aligned}
S \sim B(n, p) \quad \mathbb{E} S & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
\text { Try } S \sim \tilde{S}=\sum_{k=1}^{n} \tilde{x}_{k} \quad \mathbb{E} \tilde{S} & =\sum_{k=1}^{n} \mathbb{E} \tilde{X}_{k} \\
& =n p
\end{aligned}
$$

Lee 13
\# Recall ...
$\mathbb{E}[x]$ linear, monotiene
If $x \geqslant 0, \quad \frac{\mathbb{E}[x]}{\sum_{k} p_{k} x_{k}} \in[0, \infty]$
If X is not always positive, we can say $X=X^{+}-X^{-}$

Then $\mathbb{E}[x]=\mathbb{E}\left[x^{+}\right]-E[x]$

$$
\begin{aligned}
& \mathbb{E}\left(X^{+}\right) \in[0, \infty] \\
& \mathbb{E}\left(X^{-}\right) \in[0, \infty]
\end{aligned}
$$

Note if $\mathbb{E}\left(X^{+}\right)=\mathbb{E}\left(X^{-}\right)=\infty$, $\mathbb{E}(X)$ not well defined
\# Describing spread

$$
\sigma:=\sqrt{\operatorname{var}(x)}
$$

\leftarrow Standard deviation
Variance properties
(1) $\operatorname{var}(a x)=\alpha^{2} \operatorname{var}(X)$
(2)

$$
\begin{aligned}
& \mathbb{E}\left[(x(\omega)-\mathbb{E}(x))^{2}\right]=\mathbb{E}\left[x^{2}+(\mathbb{E}(x))^{2}-2(\mathbb{E}(x)) x\right] \\
& =\mathbb{E}\left[x^{2}\right]+\mathbb{E}\left[(\mathbb{E}(x))^{2}\right]-2(\mathbb{E}(x)) \cdot \mathbb{E}(x) \\
& \text { This is constant } \\
& =\mathbb{E}\left[x^{2}\right]-(\mathbb{E}(x))^{2}
\end{aligned}
$$

Transformation formula $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\mathbb{E}[g(x)] & =\sum_{x \in \operatorname{Im}(x)} g(x) \cdot P[x=x] \leftarrow \text { works } \\
& =\sum_{y \in \operatorname{Im}(g(x))} y \cdot P[g(x)=y] \leftarrow \text { by definition }
\end{aligned}
$$

Shoving they are equal

So $\operatorname{var}(x)=\mathbb{E}\left(x^{2}\right)-(\mathbb{E} x)^{2}$ consider $g(x)=x^{2}$

$$
\begin{aligned}
\sum_{x \in \operatorname{Im}(x)} g(x) \cdot P[x=x] & =\sum_{y \in \operatorname{Im}(g(x))} \sum_{x \in g^{-1\left[\left\{y^{3}\right]\right.}} g(x) P[x=x] \\
& =\sum_{y \in \operatorname{Im}(g(x))} \sum_{x \in g^{-1}\left[\left\{y^{3}\right]\right.} y P[x=x] \\
& =\sum_{y \in \operatorname{Im}(g(x))} y \sum_{x \in g^{-1}\left[\varepsilon y^{3}\right]} P[x=x] \\
& =\sum_{y \in \operatorname{Im} \lg (x))} y P[g(x)=y]
\end{aligned}
$$

(3) Assume $\mathbb{E} X=\mathbb{E} Y=0$

$$
\begin{aligned}
\operatorname{var}(X+Y) & =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[Y^{2}\right]+2 \mathbb{E}[X Y] \\
& =\operatorname{var}(X)+\operatorname{var}(Y)+2 \mathbb{E}[X Y]
\end{aligned}
$$

Observe $\operatorname{var}(x+c)=\operatorname{var}(x)$

$$
\begin{aligned}
& \mathbb{E}\left(x^{2}+c^{2}+2 x c\right)-(\mathbb{E}(x+c))^{2} \\
\cdots= & \operatorname{var}(x)
\end{aligned}
$$

Then $\operatorname{var}(\tilde{X}+\tilde{Y})$

$$
\begin{aligned}
& =\operatorname{var}(X+Y+\mathbb{E} \tilde{X}+\mathbb{E} \tilde{Y}) \quad \text { define } \begin{array}{l}
X=\tilde{X}-\mathbb{E} \tilde{X} \\
Y=\tilde{Y}-\mathbb{E}
\end{array} \\
& =\operatorname{var}(X+Y) \\
& =\operatorname{var}(X)+\operatorname{var}(Y)+2 E(X Y) \\
& =\operatorname{var}(X)+\operatorname{var}(Y)+\underset{\text { Covariance } \operatorname{cov}(\tilde{X}, \tilde{Y})}{2 \mathbb{E}[(\tilde{X}-\mathbb{E} \tilde{X})(\tilde{Y}-\mathbb{E} \tilde{Y})]} \\
& =\operatorname{var}(\tilde{x})+\operatorname{var}(\tilde{y})+2 \operatorname{Cov}(\tilde{x}, \tilde{y})
\end{aligned}
$$

Lee 14
\# Recall vamance

$$
\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}
$$

Observation: $\operatorname{var}(X)$ doesn't depend on $\mathbb{E X}$.

$$
\operatorname{var}(x)=\operatorname{var}(\tilde{x})=\mathbb{E}\left[\tilde{x}^{2}\right]
$$

\# Covariance

$$
\operatorname{cov}(X \mid Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]
$$

Observe con (.1.) as function is symmetric and bilinear
Observe $\operatorname{var}(x)=\operatorname{cov}(x \mid x)$ linear for each arg

$$
\begin{aligned}
& \text { Ex. } \quad S=\sum_{k=1}^{n} x_{k} \\
& \operatorname{var}(S)=\operatorname{cov}\left(\sum_{k=1}^{n} x_{k} \mid \sum_{j=1}^{n} x_{j}\right) \\
& =\sum_{k} \operatorname{cov}\left(x_{k} \mid \sum_{j=1}^{n} x_{j}\right) \\
& =\sum_{k} \sum_{j} \operatorname{cov}\left(x_{k} \mid x_{j}\right) \\
& =\sum_{k} \operatorname{cov}\left(x_{k} \mid x_{k}\right)+\sum_{k \neq j} \operatorname{cov}\left(x_{k} \mid x_{j}\right) \\
& =\sum_{k} \operatorname{var}\left(x_{k}\right)+2 \sum_{k<j} \operatorname{cov}\left(x_{k} \mid x_{j}\right)
\end{aligned}
$$

\# Variance of sums of indep variables
Def X, Y independent $\Leftrightarrow \forall A, B \subseteq \mathbb{R},\{X \in A\}, \xi Y \in B\}$ indep.

$$
\Rightarrow P[X \in A \mid Y \in B]=P[X \in A]
$$

\Leftrightarrow for discrete $X, Y, \quad \forall k, l, P\left[X=x_{k}, Y=y_{l}\right]=P\left[X=x_{k}\right] P\left[Y=x_{l}\right]$
\# Expected value of product

$$
\begin{array}{ll}
\mathbb{E}[X Y]=\sum_{k} \sum_{l} x_{k} y_{l} P\left[X=x_{k}, Y=y_{l}\right] \quad \begin{array}{l}
\text { Notice } \\
\\
\\
\text { cove }(X \mid Y)=\mathbb{E}(X Y)-\mathbb{E} X \cdot \mathbb{E} Y
\end{array}, r \text { (X) }
\end{array}
$$

Consider

$$
\mathbb{E}[X Y]=\mathbb{E}\left[\left(\sum_{L} x_{k} \cdot 1_{\left\{X=x_{k j}\right.}^{\text {Indicator fund }}(w)\right)\left(\sum_{i} y_{l} \cdot 1_{\left\{Y=y_{l}\right\}}(\omega)\right)\right]
$$

only if both indicators are 1, the inner is $x_{k} y_{l}$. Else it's 0

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{k} \sum_{l} x_{k} \cdot y_{l} \cdot 1_{\left\{y=y_{\ell}\right\}}(\omega) \cdot 1_{\left\{x=x_{k}\right\}}^{\text {indicator for } x \cap Y)}\right. \\
& =\mathbb{E}\left[\sum_{k} \sum_{l} x_{k} \cdot y_{l} \cdot 1_{\left\{Y=y_{l}, x=x_{k j}\right.}(\omega)\right] \\
& =\sum_{k} \sum_{l} x_{k} \cdot y_{l} \mathbb{E}\left[1_{\left\{Y=y_{l}, x=x_{k}\right\}}(\omega)\right] \\
& =\sum_{k} \sum_{l} x_{k} \cdot y_{l} P\left[y=y_{l}, x=x_{k}\right]
\end{aligned}
$$

Special case: consider independent X, Y.

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{k} \sum_{l} x_{k} \cdot y_{l} P\left[Y=y_{l}\right] P\left[X=x_{k}\right] \\
& =\sum_{k} x_{k} P\left[X=x_{k}\right] \cdot \sum_{l} y_{l} P\left[Y=y_{l}\right] \\
& =\mathbb{E}(X) \cdot \mathbb{E}(Y)
\end{aligned}
$$

\# Back to covariance
If X, Y, X_{k} independent \Rightarrow
Note \Leftarrow is not true

$$
\begin{aligned}
\operatorname{cov}(X \mid Y) & =\mathbb{E}(X Y)-\mathbb{E} X \cdot \mathbb{E} Y \\
& =\mathbb{E} X \cdot \mathbb{E} Y-\mathbb{E} X \cdot \mathbb{E} Y \\
& =0
\end{aligned}
$$

So $\operatorname{var}\left(\Sigma X_{k}\right)=\sum_{k} \operatorname{var}\left(X_{k}\right)+0$
\# Variance of distributions

$$
\begin{aligned}
&(1) S \sim B(n, p) \mathbb{E} S \\
& S \sim S^{\prime}:=\sum_{k=1}^{n} x_{k}^{n} p \\
&=\sum_{k=1}^{n} \operatorname{var}\left(x^{2}\right) \\
&=\sum_{k=1}^{n}\left(\mathbb{E}\left(x^{2}\right)-(\mathbb{E} x)^{2}\right) \\
&=\sum_{k=1}^{n}\left(p-p^{2}\right) \\
&=n\left(p-p^{2}\right) \\
&=n p(1-p)
\end{aligned}
$$

Lee 15
\# Person distribution

Taylor expansion

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
\begin{aligned}
& x \sim \operatorname{Poi}(\lambda) \\
& \mathbb{E}[x]=\sum_{k \geqslant 0} k e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \lambda \sum_{k \geqslant 1} \frac{\lambda^{k-1}}{k(k-1)!}=e^{-\lambda} \lambda \sum_{j \geqslant 0} \frac{\lambda^{j}}{j!} \stackrel{*}{=} e^{-\lambda} \lambda e^{\lambda}=\lambda \\
& \operatorname{var}(x) \stackrel{?}{=} \quad \mathbb{E}[x(x-1)]=\sum_{k \geqslant 0} k(k+1) e^{-\lambda} \frac{\lambda^{k}}{k!} \cdots=\lambda^{2} e^{-\lambda} e^{\lambda}=\lambda^{2} \\
& \\
& \mathbb{E}\left[x^{2}\right]=\mathbb{E}[x(x-1)+x]=\lambda^{2}+\lambda \\
& \operatorname{var}(x)=\lambda
\end{aligned}
$$

\# Geometric distribution

$$
\begin{aligned}
& \operatorname{germ}(p) \sim x \quad P[x=k]=(1-p)^{k-1} p \quad \text { for } k \geqslant 1 \\
& \mathbb{E}[x]=\sum_{k \geqslant 1} k p(1-p)^{k-1}=\left.p \sum k x^{k-1}\right|_{x=1-p} \\
& =\left.p \sum\left(x^{k}\right)^{\prime}\right|_{x=1-p} \\
& \left.=\left.p\left(\sum_{k=1} x^{k}\right)^{\prime}\right|_{x=1-p} \leftarrow \begin{array}{c}
\text { power } \\
0 \leqslant 1-p<1
\end{array}\right) \text { it should } \\
& =\left.P\left(\sum_{k \geqslant 0} x^{k}\right)^{\prime}\right|_{x=1-p} \\
& =\left.p\left(\frac{1}{1-x}\right)^{\prime} \quad\right|_{1-p} \\
& =\left.p \frac{1}{(1-x)^{2}}\right|_{1-p} \\
& =p \frac{1}{(1-(1-p))^{2}} \\
& =p \frac{1}{p^{2}} \\
& =\frac{1}{p}
\end{aligned}
$$

At. If $x \in \mathbb{N} \Rightarrow \mathbb{E}[x]=\sum_{k \geqslant 0} P[x>k]=\sum_{j \geqslant 1} P[x \geqslant j]$

$$
\begin{aligned}
& =\sum_{k: 0}(1-p)^{k} \\
& =\frac{1}{1-(1-p)} \\
& =\frac{1}{p}
\end{aligned}
$$

\# Conditional Expectation

$$
\underset{\mathbb{E}[x]=\sum_{k} x_{k} P\left[x=x_{k}\right]}{ }
$$

(for discrete x)
$\mathbb{E}_{A}[X]=\sum_{k} x_{k} P_{A}\left[x=x_{k}\right]=\sum_{k} x_{k} P\left[x=x_{k} \mid A\right]$
$\mathbb{E}[x \mid A]$

$$
\begin{aligned}
\operatorname{var}_{A}(X) & =\mathbb{E}_{A}\left[\left(X-\mathbb{E}_{A}(X)^{2}\right)\right] \\
& =\mathbb{E}\left[\left(X-\mathbb{E}(X \mid A)^{2}\right) \mid A\right] \\
& =\mathbb{E}_{A}\left[X^{2}\right]-\left(\mathbb{E}_{A} X\right)^{2}
\end{aligned}
$$

Partition Thu Expectation Ver

$$
\begin{aligned}
& P[A]=\sum_{k} P\left[A \cap B_{k}\right]=\sum_{k} P[A \mid B] P\left[B_{k}\right] \\
& \mathbb{E}[X]=\sum_{k} \mathbb{E}\left[X \cdot 1_{B_{k}}\right]=\sum_{k} \mathbb{E}\left[X \mid B_{k}\right] P\left[B_{k}\right]
\end{aligned}
$$

Recall discrete:= countable codomain
\# Joint Distribution
$\Omega \xrightarrow{X_{k}} S=\mathbb{R}$ for discrete $R V_{s} X_{k}, k \in 1 . n$
Let $\vec{X}(w)=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n} \quad$ which is still a discrete $R V$.

$$
\mu_{\vec{x}}(A)=P[\vec{X} \in A]=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in A} P\left[X_{1}=x_{1}, \ldots, x_{n}=x_{n}\right]
$$

Lee 16

MTI next Monday - no cheat sheet
\# Joint distribution (cont.)
Let X, Y be RVs $\Omega \rightarrow S$. Define $\vec{X}(\omega)=(X(\omega), Y(\omega))$

$$
\begin{aligned}
& S^{2} \rightarrow \mathbb{R} \\
& \mu_{\vec{x}}(A)=P[\vec{x} \in A]=\sum_{(x, y) \in A} P[\vec{x}=(x, y)] \\
&=\sum_{(x, y) \in A} P[x=x, Y=y] \\
& \mu_{x, Y}(A) \\
&=\sum_{(x, y) \in A} \mu_{x, y}(\{(x, y)\})
\end{aligned}
$$

So $\mu_{X, Y}$ is completely determined by all $P[x=x, Y=y], \begin{aligned} & x \in \operatorname{Im}(x) \\ & y \in \operatorname{Im}(Y)\end{aligned}$

Say $X, Y \sim \mu_{X, Y}$. Can one recover $\mu_{X,}, \mu_{Y}$?

$$
\mu_{x}(x)=P[X=x]=\sum_{y \in \ln (Y)} P[X=x, Y=y]=\sum_{y \in \operatorname{In}(Y)} \mu_{x, Y}(x, y)
$$

Say we know μ_{X}, μ_{y}, is $\mu_{X, Y}$ recoverable?

	$1 / 2$	$1 / 2$	
$1 / 20$	$1 / 4$	$1 / 4$	
$1 / 21$	$1 / 4$	$1 / 4$	\leftarrowIndependent coin flips

| | $1 / 2$ | $1 / 2$ |
| :--- | :---: | :---: | :---: |
| | 0 | 1 |x

So not recoverable in general, but recoverable if independent.
Thu X, Y indep $\Leftrightarrow \mu_{X, Y}(x, y)=\mu_{X}(x) \mu_{Y}(y)$
\# With conditional

	-1	1
-1	$1 / 6$	$1 / 8$
0	$1 / 6$	$1 / 4$
1	$1 / 6$	$1 / 8$
Y		

$$
\begin{aligned}
\mu_{Y \mid X=-1}(y) & =\text { uniform } \\
& =P[Y=y \mid x=1] \\
& =\frac{P[Y=y, X=1]}{P[x=1]} \\
& =\frac{1 / 6}{1 / 2}
\end{aligned}
$$

Notation

$$
\begin{aligned}
& \mu_{X, Y}(x, y) \\
& \mu_{Y \mid X}(a, b):=P[Y=b \mid X=a] \\
& \mu_{X \mid Y}(a, b):=P[X=a \mid Y=b]
\end{aligned}
$$

Ex. Given $\mu_{x, y}$, find μ_{x+y}

$$
\begin{aligned}
\mu_{X+Y}(z) & =P[X+Y=z] \\
& =\sum_{x \in \operatorname{Im} x} P[X+Y=z, X=x] \\
& =\sum_{x \in \operatorname{Im} x} P[x+Y=z, X=x] \\
& =\sum_{x \in \operatorname{Im} x} P[X+Y) \\
& =\sum_{x \in \operatorname{Im} X} \mu_{X, Y}(X, z-x)
\end{aligned}
$$

If X, Y indep $\left[=\sum_{x \in \operatorname{Im} x} \mu_{x}(x) \mu_{y}(z-x) \leftarrow\right.$ "convolution of $\mu_{x}, \mu_{y} "$

Lee 17
\# Joint dist. (cont)

$$
\begin{aligned}
& \Omega \xrightarrow{X, Y} S \\
& \overrightarrow{\vec{x}=(x, y)} S \times S
\end{aligned}
$$

Discrete case: sufficient to just look at singletons $\{(x, y)\} \leq S \times S$
Transformation formula

$$
\begin{aligned}
\mathbb{E}[g(x, y)]=\mathbb{E}[g(\vec{x})] & =\sum_{(x, y) \in \operatorname{Im}(\vec{x})} g(x, y) P[X=x, Y=y] \\
& =\sum_{\vec{x} \in \operatorname{Im}(\vec{x})} g(\stackrel{\rightharpoonup}{x}) P[\vec{x}=\vec{x}]
\end{aligned}
$$

Conditional

$$
\begin{aligned}
& \mu_{Y \mid X}(X, \cdot)=P[Y=\cdot \mid X=x] \\
& \mathbb{E}[g(Y) \mid X=x]=\sum_{y \in \operatorname{Im}(Y)} g(y) \cdot P[Y=y \mid X=x] \\
& \mathbb{E}[g(X, Y) \mid X=x]=\sum_{y \in \operatorname{Im}(Y)} g(x, y) \cdot P[Y=y \mid X=x]
\end{aligned}
$$

Independence
By def,

$$
\begin{aligned}
& P\left[\bigcap_{k=1}^{n}\left\{w \mid X_{k}(w) \in A_{k}\right\}\right]=\prod_{k} P\left[X_{k} \in A_{k}\right] \\
& \mathbb{N} \\
& \forall x_{1} \in X_{1}, \ldots, x_{n} \in X_{n}, \\
& P\left[x_{1}=x_{1}, \ldots, x_{n}=x_{n}\right]=\prod_{k} P\left[X_{k}=x_{k}\right]
\end{aligned}
$$

joint dist equals product of marginal dist

Ex. $\begin{array}{l}Z_{1}, Z_{2}, \ldots \\ N \sim \operatorname{Poi}(\lambda)\end{array} \quad$ ied biased coin flips $]$ independent
$X(\omega)=\sum_{k=1 . . N} Z_{k}(\omega) \quad \leftarrow \#$ of heads in first N flips
$Y(\omega)=N-X \quad \leftarrow$ \# of tails in first N flips

$$
\lambda=10, p=\frac{1}{2} \Rightarrow \mathbb{E} X=5, \mathbb{E} Y=5
$$

In general $\mathbb{E X}=\lambda_{p}$
$\rightarrow \mathbb{E}[Y \mid X=100] \stackrel{?}{=} 100$ for fair com
Way off !
Because X, Y independent so $\mathbb{E}[Y \mid X=100]=\mathbb{E}[Y]=5$
Doing the computation

$$
\begin{aligned}
& \mu_{x}(k)=P[X=k]=\sum_{n \geqslant k} P[X=k, N=n] \\
& =\sum_{n \geqslant k} P[X=k \mid N=n] P[N=n] \\
& =\sum_{n \geqslant k} P[X=k \mid N=n] e^{-\lambda} \frac{\lambda^{n}}{n} \\
& =\sum_{n \geqslant k}\binom{n}{k} p^{k} q^{n-k} e^{-\lambda} \frac{\lambda^{n}}{n} \quad(q=1-p) \\
& \downarrow \\
& X \sim \operatorname{Poi}\left(\lambda_{p}\right) \\
& Y \sim \operatorname{Poi}(\lambda q) \\
& P[X=k, Y=j]=\sum_{n \geqslant k+j} P[X=k, Y=j \mid N=n] P[N=n] \\
& =\sum_{n \geqslant k+j} P[X=k, \quad Y=j \mid N=k+j] P[N=k+j] \\
& =P[x=k \mid N=k+j] P[N=k+j] \\
& =P[X=k \mid N=k+j] P[N=k+j] \\
& =\binom{k+j}{k} p^{k} q^{j} e^{-\lambda} \frac{\lambda^{k+j}}{k+j} \\
& \stackrel{\vdots}{=} \mu_{x}(k) \cdot \mu_{y}(j) \\
& N \mid X=k \quad \sim k+\operatorname{Poi}(*)
\end{aligned}
$$

Lee 18 Contimons Prob
\# What still applies

$$
\begin{array}{ll}
X: \Omega \rightarrow \mathbb{R} & \text { for } \\
\mu_{x}(B)=P[X \in B] & B \subseteq \mathbb{R}
\end{array}
$$

more specifically $B \in B=\sigma$ (intervals) practically $\$ \equiv P(\mathbb{R})$
we shall assume this for now
Def X is absolutely contimons $\Leftrightarrow \exists f_{x}(t) \geqslant 0, f_{x}: \mathbb{R} \rightarrow[0, \infty)$,

$$
\forall B \in B, P[x \in B]=\int_{B} f_{x}(t) d t
$$

Analogy

mass of $B=\int_{B} f_{x}(t) d t$
Def such f_{x} is the prob density fine of x

$$
P[x \in B] \stackrel{\text { discrete }}{=} \sum_{\substack{x \in \operatorname{In} x \\ x \in B}} \underbrace{P[X=x]}_{P(x)}=\sum_{x \in \operatorname{In} x} 1_{B}(x) \cdot p(x)
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} 1_{B}(x) f_{x}(x) d x=\int_{\mathbb{R}} 1_{B}(x) \mu_{x}(d x) \\
\mathbb{E}[x] & =\int_{\mathbb{R}} x \cdot f_{x}(x) d x \\
\mathbb{E}[g(x)] & =\int_{\mathbb{R}} g(t) \cdot f_{x}(t) d t
\end{aligned}
$$

Properties of f_{x} : Typically f_{x} needs to be stepirise cont.

1. $f_{x}(t) \geqslant 0$
2. $\int_{\mathbb{R}} f_{x}(t) d t=P[x \in \mathbb{R}]=1 \quad \begin{aligned} & \text { (assuming } x \text { is real... sometimes } \\ & x \in[-\infty, \infty] \text { then this breaks) }\end{aligned}$
3. $\int_{B} f_{x}(t) d t$ has to be well defined for all B

$$
\begin{aligned}
\operatorname{var} X & =\mathbb{E}\left[(x-\mathbb{E} x)^{2}\right]=\mathbb{E}\left(x^{2}\right)-(\mathbb{E} x)^{2} \\
& =\int_{\mathbb{R}} x^{2} f_{x}(x) d x-(\mathbb{E} x)^{2}
\end{aligned}
$$

\# Distributions

$$
\begin{aligned}
x \sim \operatorname{Uniform}([a, b]) & \Leftrightarrow f_{x}(x)=\frac{1}{b-a} 1\{x \in[a, b]\} \\
& \xrightarrow[a]{1} \\
& \mathbb{E} X=\frac{b+a}{2} \\
& \left(=\int_{a}^{b} t \cdot \frac{1}{b-a} d t=\frac{1}{b-a} \frac{b^{2}-a^{2}}{2}=\frac{b+a}{2}\right)
\end{aligned}
$$

$$
x \sim \underset{\exp (\lambda) \text { analogue to geometric }}{\Leftrightarrow} \Leftrightarrow f_{x}(x)=\lambda e^{-\lambda t} 1_{\{x \in[0, \infty)\}}
$$

$$
\begin{aligned}
\mathbb{E} X=\frac{1}{\lambda}(& \left.=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\ldots \text { ouch by part }\right) \\
& =\left[t \cdot-e^{-\lambda t}\right]_{0}^{\infty}-\int 1 \cdot-e^{-\lambda t} d t \\
& =0--\frac{1}{\lambda}
\end{aligned}
$$

$\mathbb{E}\left(X^{2}\right)=\int_{0}^{\infty} t^{2} \lambda e^{x+t} d t \quad=\cdots=$ "whatever that is"

$$
\begin{aligned}
& X= N(0,1) \Rightarrow f_{x} \text { standard normal } \\
& \int_{\mathbb{R}} e^{-t^{2} / 2} d t=: C \\
& C^{2}=\left(\int_{\mathbb{R}} e^{-x^{2} / 2} d x\right)\left(\int_{\mathbb{R}} e^{-y^{2} / 2} d y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r e^{-r^{2} / 2} d r d \theta \\
& =\int_{0}^{2 \pi} 1 d \theta \\
& =2 \pi
\end{aligned}
$$

Lee 19
\# Cumulative distribution function

Let X be $R V \in \mathbb{R}$

$$
\begin{aligned}
& F_{X}(t)=P[x \leqslant t] \\
& { }_{C D F}
\end{aligned}
$$

Properties of $F_{x}: \mathbb{R} \rightarrow[0,1]$

1. Monotone increasing
2.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} F_{x}(t) & =\lim _{t \rightarrow \infty} P[x \leqslant t]=1 \\
& =\lim _{t \rightarrow \infty} P[\xi x \leqslant t \xi] \\
& =\lim _{t \rightarrow \infty} P\left[\bigcup_{t} \xi x \leqslant t \xi\right] \\
& =P[\Omega] \\
& =1
\end{aligned}
$$

3. $\lim _{t \rightarrow-\infty} F_{x}(t)=0$
4. F_{X} is right contunuons

$$
x \sim B(p)
$$

monotone continuity!

Generally:

Thu μ_{x} and F_{x} uniquely determine each other
If X is absolutely cont. with density f_{X},

$$
\frac{d}{d t} F_{x}(t)=\frac{d}{d t} P[x \leqslant t]=\frac{d}{d t} \int_{-\infty}^{t} f_{x}(x) d x=f_{x}(t)
$$

foundamental tho of calculus

Lee 20 Contumons Joint Dist
\# Joint Dist
$\Omega \xrightarrow{X} \mathbb{R} \quad X$ abs. cont. $\Leftrightarrow \exists f_{x}(x), P[x \in B]=\int_{B} f_{x}(x) d x$ $L f_{x} \geqslant 0$
Consider:

$$
-\int_{\mathbb{R}} f_{x}(x) d x=1
$$

$$
\begin{array}{ll}
\Omega \stackrel{\stackrel{\rightharpoonup}{X}}{\longrightarrow} \mathbb{R}^{n} & \vec{X} \text { abs. cont. } \Leftrightarrow \exists \\
\begin{aligned}
\vec{X}=\left(x_{1}, \ldots, x_{n}\right) & f_{\vec{x}} \\
& \left\llcorner f_{\bar{x}} \geqslant 0\right. \\
& \left\llcorner\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f_{\vec{x}}(\vec{x}) d x, \cdots d x_{n}\right. \\
& =\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) d x d \vec{x}
\end{aligned}
\end{array}
$$

$\Omega \quad \xrightarrow{\infty} \quad \mathbb{R} \quad \xrightarrow{\varphi} \quad \mathbb{R}$
$\begin{array}{ll}\dot{P} & \mu_{x}=P \circ X^{-1} \\ \vdots & \left.\mathbb{E}[\varphi(x)]=\int_{\Omega} \varphi \circ X(\omega) \cdot P(d \omega)\right) ~\end{array}$

$$
\mathbb{E}[\cdot]=\int_{\Omega} \cdot d P \quad \int_{\mathbb{R}}^{i} \cdot \mu_{x}(d x)
$$

$$
=\int_{\mathbb{R}} \varphi(x) \mu_{x}(d x)
$$

If $x \sim f_{x}\left(x\right.$ abs. cont. $\quad \Rightarrow \mathbb{E}[\varphi(x)]=\int_{\mathbb{R}} \varphi(x) f_{x}(x) d x$

Analoguons to ...

full generality

$$
\mathbb{E}[\varphi(\vec{x})] \stackrel{\downarrow}{=} \int_{\mathbb{R}^{n}} \varphi(\vec{x}) \mu_{\vec{x}}(d \vec{x})
$$

If $\vec{x} \sim f_{\vec{x}}(\vec{x}$ abs. cont.) :

$$
\begin{aligned}
& \mathbb{E}[\varphi(\vec{x})]=\int_{\mathbb{R}^{n}} \varphi(\vec{x}) f_{\vec{x}}(\stackrel{\rightharpoonup}{x}) d \vec{x} \\
& =\int_{\mathbb{R}} d x_{1}, \ldots \int_{\mathbb{R}} d x_{n} \varphi\left(x, \ldots, x_{n}\right) f_{\vec{x}}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Ex. } \varphi=1_{B}, & B \subseteq \mathbb{R}^{n} \\
\mathbb{E}[\varphi(\vec{x})] & =P[\vec{x} \in B]=\mu_{\vec{x}}(B) \quad \text { (indicator way) } \\
& =\int_{\mathbb{R}^{n}} I_{B}(\vec{x}) f_{\vec{x}}(\vec{x}) d \vec{x} \quad & \text { (transformation formula) } \\
& =\int_{B} f_{\vec{x}}(\vec{x}) d \vec{x}
\end{array}
$$

Ex. $\quad X, Y \sim f_{x, y}$ given

$$
S:=X+Y
$$

Q : if S abs. cont.?
Examine comm. dist $F_{s}(t)=P[s \leqslant t]$ then $f_{s}=\frac{d}{d t} F_{s}(t)$
want $\frac{d}{d t} P[X+Y \leqslant t]$

$$
\begin{aligned}
& =\frac{d}{d t} P[(X, Y) \in B=\{(x, y) \in \mathbb{R} \mid x+y \leqslant t\}] \\
& =\frac{d}{d t} \int_{\mathbb{R}} \int_{-\infty}^{t-x} f_{X, Y}(x, y) d y d x \\
& =\frac{d}{d t} \int_{\mathbb{R}} g_{+(x)} d x \text { shh depending on x and } t \\
& =\int_{\mathbb{R}} d x \frac{d}{d t} \int_{-\infty}^{t-x} f_{X, Y}(x, y) d y \\
& =\int_{\mathbb{R}} d x \frac{d}{d t} G(t-x) \\
& =\int_{\mathbb{R}} d x G^{\prime}(t-x) \frac{d}{d t}(t-x) \\
& =\int_{\mathbb{R}} f_{X, Y}(x, t-x) d x \\
& =f_{X+Y}(t)
\end{aligned}
$$

$$
G(s):=\int_{-\infty}^{s} f_{x, y}(x, y) d y
$$

$$
G^{\prime}(s)=f_{X, Y}(x, s)
$$

Fact X, Y indep. \& abs. cont. $w f_{X}, f_{Y} \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$
Also $\Rightarrow f_{x+y}(t)=\int f_{X}(x) f_{Y}(t-x) d x=\left(f_{X} * f_{Y}\right)(t)$

EX. (X, Y) abs. cont. w $f_{X, Y}$
Q : can we get x w f_{x} ?

$$
\begin{aligned}
\frac{d}{d t} F_{X}(t) & =\frac{d}{d t} P[x \leqslant t]=\frac{d}{d t} P[(x, y) \in B=\xi(x, y) \in \mathbb{R} \mid x \leqslant t \xi] \\
& =\frac{d}{d t} \int_{\mathbb{R}} d y \int_{-\infty}^{t} d x f_{X, Y}(x, y) \\
& =\int_{\mathbb{R}} d y \frac{d}{d t} \int_{-\infty}^{t} d x f_{X, Y}(x, y) \\
& =\int_{\mathbb{R}} d y f_{X, Y}(t, y) \quad \text { integrate over line } \\
& =f_{x}(t)
\end{aligned}
$$

Lee 21

Recall jour cont. dist.

$$
\begin{aligned}
& \mu_{X, Y}(B)=\iint_{B} f_{x, Y}(x, y) d x d y \\
& \mathbb{E}[g(x, y)]=\iint_{B} g(x, y) f_{x, Y}(x, y) d x d y
\end{aligned}
$$

\# Funding f_{x}

$$
\begin{aligned}
& f_{X}(t)=\frac{d}{d t} F_{X}(t)=\frac{d}{d t} \mathbb{P}[x \leqslant t] \\
& f_{X, Y}(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} \mathbb{P}[X \leqslant x, Y \leqslant y] \\
&=\frac{\partial}{\partial x} \frac{\partial}{\partial y} \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d u d v
\end{aligned}
$$

* Conditional Dist

Under $\mathbb{P}[\cdot \mid Y=y]$, there's cold. density $f_{X \mid Y=y}(\cdot)$

$$
\begin{aligned}
& \mathbb{P}[X \in B \mid Y=y]=\int_{B} f_{X \mid Y}(x, y) d x \\
& \mathbb{E}[g(Y) \mid X=t]=\int_{R} g(y) f_{Y \mid X}(t, y) d y \\
& \mathbb{E}[g(X, Y) \mid Y=s]=\mathbb{E}[g(X, s) \mid Y=s] \\
&=\int_{R} g(x, s) f_{X \mid Y}(x, s) d x
\end{aligned}
$$

In discrete

Cont

$$
f_{X \mid Y}(x, y)=\left\{\begin{array}{l}
\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \text { if } f_{Y}(y)>0 \\
\left\{\begin{array}{l}
\text { Not defied } \\
0 \leftarrow \text { practical } \\
\text { whatever you like }
\end{array}\right\} \text { if } f_{Y}(y)=0
\end{array}\right.
$$

Fact if $Y \sim a . c . \quad \forall a, P[Y=a]=\int_{a}^{a}$ whatever $=0$
So... $\mathbb{P}[X \in B \mid Y=t]=\frac{\mathbb{P}[X \in B, Y=t]}{\mathbb{P}[Y=t] \leftarrow 0}: C$
\#Checking other things

$$
\begin{aligned}
& \mathbb{P}[X \in B] \stackrel{?}{=} \int f_{Y}(y) \mathbb{P}[X \in B \mid Y=y] d y \\
& \mathbb{R H S}=\int_{\mathbb{R}} f_{Y}(y) \int_{B} f_{X \mid Y}(x, y) d x d y \\
&=\int_{\mathbb{R}} f_{Y}(y) \int_{B} \frac{f_{X, Y}(x, y)}{f_{Y(y)}} d x d y \\
&=\int_{\mathbb{R}} \int_{B} f_{X, Y}(x, y) d x d y \\
&=\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{B}(x) f_{X, Y}(x, y) d x d y \\
&=\mathbb{E}\left[1_{B}(X)\right] \quad \text { So conditicen } \\
&=\mathbb{P}[X \in B] \quad
\end{aligned}
$$

So conditioning still works!
Thu Let $x \geqslant 0 \quad \mathbb{E}[x] \stackrel{\substack{\text { total } \\ \text { geneality }}}{=} \int_{0}^{\infty} \mathbb{P}[x>t] d t \quad\left(=\int_{0}^{\infty} \mathbb{P}[x \geqslant t] d t\right)$

$$
\begin{aligned}
R H S & =\int_{0}^{\infty} \mathbb{E}[1\{x>t\}(\omega)] d t \\
& =\int_{0}^{\infty} \int_{\Omega} \mathbb{P}[d \omega] 1\{x>t\}(\omega) d t \\
& =\int_{\Omega} \int_{0}^{\infty} \mathbb{P}[d \omega] 1_{\{x>t\}(\omega)} d t \\
& =\int_{\Omega} \mathbb{P}[d \omega] \int_{0}^{\infty} 1_{\varepsilon t \in(-\infty, x(\omega))}(t) d t \\
& =\int_{\Omega} \mathbb{P}[d \omega] X(\omega) \\
& =\mathbb{E}[X]
\end{aligned}
$$

Lee 22
\# Some shortcut for transformation

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \sim f_{x_{1}, x_{2}} \\
& \vec{\Phi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& U \\
& G \quad \backsim \quad D \\
& \vec{\Phi}\left(x_{1}(w), X_{2}(w)\right)=\left(U_{1}(w), U_{2}(w)\right)
\end{aligned}
$$

Avenue:

1. ϕ brjective
2. Φ differentiable \Leftrightarrow locally linear, approximate with plane. representable by matrix - in fact Jacobian matrix

$$
\begin{aligned}
& \phi=\left[\begin{array}{l}
\phi_{1}\left(x_{1}, x_{2}\right) \\
\phi_{2}\left(x_{1}, x_{2}\right)
\end{array}\right] \\
& \text { jacobian }=\left[\left.\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{1}} \\
\frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right|_{\left(x_{1}, x_{2}\right)}=\right.\text { local derivative }
\end{aligned}
$$

Want $f u_{1}, u_{2}$
\rightarrow If we wont $F_{X, Y} \ldots$ double integral \& differentiate: C
\rightarrow Try matrix calculus

$$
\mathbb{P}\left[\left(x_{1}, x_{2}\right) \in T / /\left.\right|_{4}\right] \quad=\mathbb{P}\left[\left(u_{1}, u_{2}\right) \in\right.
$$

area so small, density doesn't change

$$
\begin{aligned}
f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right) \cdot \operatorname{area}(\mathbb{T / 4}) & =f_{u, u_{2}}\left(u_{1}, u_{2}\right) \cdot \underbrace{\operatorname{area}(T / V)}_{\text {use determinant }} \\
\Rightarrow f_{u, u_{2}}\left(u_{1}, u_{2}\right) & =f_{x_{1}, x_{2}}\left(x_{1}\left(u_{1}, u_{2}\right), x_{2}\left(u_{1}, u_{2}\right)\right) \cdot \frac{1}{\left|\operatorname{det} D \phi\left(x_{1}\left(u_{1}, u_{2}\right), x_{2}\left(u_{1}, u_{2}\right)\right)\right|} \\
& =f_{x_{1}, x_{2}}\left(x_{1}\left(u_{1}, u_{2}\right), x_{2}\left(u_{1}, u_{2}\right)\right) \cdot\left|\operatorname{det} D \phi^{-1}\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right)\right)\right|
\end{aligned}
$$

$$
=f_{x_{1}, x_{2}}\left(\phi^{-1}\left(u_{1}, u_{2}\right)\right) \cdot\left|\operatorname{det} D \phi^{-1}\left(u_{1}, u_{2}\right)\right|
$$

Ex. (X, Y) ied $\mathcal{N}(0,1) \xrightarrow{\text { polar }}$ with $f_{X, Y}$

$$
\begin{array}{ll}
R=\sqrt{X^{2}+Y^{2}} & \epsilon[0, \infty) \\
\Theta=\tan ^{-1}(Y / X) & \epsilon[0,2 \pi)
\end{array}
$$

$$
\begin{aligned}
\phi: \mathbb{R}^{2} & \longleftrightarrow[0, \infty) x[0,2 \pi) \\
\phi(x, y) & =\left[\begin{array}{l}
\sqrt{x^{2}+y^{2}} \\
\tan ^{-1}(y / x)
\end{array}\right] \quad \phi^{-1}(\theta, r)=\left[\begin{array}{c}
r \cos \theta \\
r \sin \theta
\end{array}\right] \\
\operatorname{det} D \phi^{-1} & =\operatorname{det}\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \\
f_{R, \theta}(r, \theta) & =f x, y(x(\theta, r), y(\theta, r)) \cdot 1 \operatorname{det} D \phi^{-1} \mid \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} \cdot r \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)} r \\
& =\frac{r}{2 \pi} e^{-\frac{1}{2} r^{2}} \quad \leftarrow \text { independent of } \theta . \text { relationally invariant }
\end{aligned}
$$

Clean up:

$$
f_{R, \theta}(r, \theta)=1_{[0, \infty)}(r) 1_{[0,2 \pi)}(\theta) \frac{r}{2 \pi} e^{-\frac{1}{2} r^{2}}
$$

Turns out here R and Θ independent.
Proof:

$$
\begin{aligned}
& f_{R, \theta}(r, \theta)=1_{[0, \infty)}(r) \\
& 1_{[0,2 \pi)}(\theta) \frac{r}{2 \pi} e^{-\frac{1}{2} r^{2}} \\
&=\left[\begin{array}{ll}
1_{[0,2 \pi)}(\theta) & \frac{1}{2 \pi}
\end{array}\right] \cdot\left[1_{[0, \infty)}(r) r e^{-\frac{1}{2} r^{2}}\right] \\
& \operatorname{check}^{=} f_{\theta}(\theta) f_{R}(r)
\end{aligned}
$$

Lee 23
\# Recall transformation trick

Realise $\phi(\vec{x}+d \vec{x})-\phi(\vec{x}) \cong[D \phi]_{\vec{x}} \cdot d \vec{x}$
$L \frac{\partial(u, v)}{\partial(x, y)}$, local linearisation of ϕ

$$
=\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x} & \frac{\partial \phi_{1}}{\partial y} \\
\frac{\partial \phi_{2}}{\partial x} & \frac{\partial \phi_{2}}{\partial y}
\end{array}\right]
$$

Also $\left[D\left(\phi^{-1}\right)\right]_{\vec{u}}=\left[(D \phi)^{-1}\right]_{\vec{x}}$ where $\vec{x}=\phi^{-1}(\vec{u})$
inverse fund the
Shortest $f_{u, v}(\vec{u})=\frac{1}{\left|[\operatorname{det} D \phi]_{\vec{x}}\right|} \cdot f_{X, Y}(\vec{x})$

$$
=\left|\left[\operatorname{det} D\left(\phi^{-1}\right)\right] \vec{u}\right| \cdot f_{X, Y}(\stackrel{\rightharpoonup}{x})
$$

\# Multivar normal dist
Single var:

$$
\begin{aligned}
& X \sim \mathcal{N}(0,1) \\
& \sigma X+b=: Y \sim \mathcal{N}\left(b, \sigma^{2}\right)
\end{aligned}
$$

Multi
$\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \quad x_{i}$ ind $\sim \mathcal{N}(0,1)$
$\vec{Y}=A \cdot \vec{X} \quad \leftarrow$ linearly transformed
so $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \phi(\vec{x})=A \cdot \vec{x}$
also $[D \Phi]_{\vec{x}}=A \quad \forall \vec{x}$ since ϕ already linear

$$
\begin{aligned}
& f_{\vec{Y}}(\vec{y})=\frac{1}{|\operatorname{det} A|} f_{\vec{x}}(\vec{x}) \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} \text { where } x_{i}=\# i \phi^{-1}(\vec{y}) \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}\left(\vec{x}^{\top} \cdot \stackrel{\rightharpoonup}{x}\right)} \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2}\left(\left(A^{-1} \cdot \vec{y}\right)^{\top} \cdot\left(A^{-1} \cdot \vec{y}\right)\right)} \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2} \vec{y}^{\top}\left(A^{-1}\right)^{\top} A^{-1} \vec{y}} \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2} \vec{y}^{\top}\left(A^{\top}\right)^{-1} A^{-1} \vec{y}} \\
& =\frac{1}{|\operatorname{det} A|} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2} \vec{y}^{\top}\left(A A^{\top}\right)^{-1} \vec{y}} \\
& \mathbb{E} \vec{Y}=\overrightarrow{0} \Leftarrow \text { each } X_{i} \text { centered, linear combo of them centered } \\
& \operatorname{cov}\left(y_{k} \mid y_{j}\right)=\operatorname{cov}\left(\sum_{i} A_{k l} X_{l} \mid \sum_{i} A_{j i} X_{i}\right) \\
& =\sum_{l, i} A_{k l} A_{j i} \underbrace{\operatorname{cov}\left(X_{l} \mid X_{i}\right)}= \begin{cases}1 & l=i \\
0 & \text { else }\end{cases} \\
& =\sum_{l} A_{k l} A_{j l} 1 \\
& =\sum_{l} A_{k l} A_{l_{j}}^{\top} 1 \\
& =\underbrace{\left(A A^{\top}\right)_{k, j}}_{\tau \text { interesting }}=: C_{k, j} \quad \text { "cover matrix" } \\
& C=A A^{\top} \\
& \operatorname{det} C=\operatorname{det} A \operatorname{det} A^{\top} \\
& =(\operatorname{det} A)^{2}>0 \\
& \sqrt{\operatorname{det} C}=|\operatorname{det} A|
\end{aligned}
$$

$$
f_{\vec{y}}(\vec{y})=\frac{1}{\sqrt{\operatorname{det} C}(\sqrt{2 \pi})^{n}} \quad e^{-\frac{1}{2} \vec{y}^{\top} c^{-1} \vec{y}}
$$

symmetric positive definite matrix multivariate normal dist

More general one can do ${\underset{\imath}{ }}_{\vec{Y}}:=A \vec{X}+\vec{b}$
multivar normal RV vector
\# Brownean motion, conditioned on destration

what's dist of height at inge t ?

Lee 24
\# Ex.
symmetric positive definite
(X, Y) joint normal $C=\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right], \quad \rho=\operatorname{cov}(X, Y)=\operatorname{corr}(X, Y)$
Def Correlation $\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var} X} \sqrt{\operatorname{var} Y}}$
normalise, so that corr just captures correlation.

Note cove $\in(-\infty, \infty)$
corr $\in[-1,1]$
in extreme case, $\operatorname{corr}(x \mid x)=\frac{\operatorname{cov}(x, x)}{\operatorname{var} x}=1$
$\Rightarrow \rho$ must be in $(-1,1) \quad$ (safe to assume $\rho \neq-1, \rho \neq 1$?)
Question: what's conditional dist of Y given $X=x$ viz. fYוX
\ldots very messy... try method (1) let $z, x \sim N(0,1)$ iid

$$
\begin{aligned}
& Y:=\alpha X+\beta Z \quad \begin{aligned}
\operatorname{cov}(X, Y) & =\operatorname{cov}(X \mid \alpha X+\beta Z) \\
& =\alpha \operatorname{cov}(X, X)+\beta(X, Z) \\
& =\alpha=p
\end{aligned}
\end{aligned}
$$

$\operatorname{var} Y=\operatorname{var}(\alpha X+\beta Y)$

$$
1 \stackrel{?}{=} \operatorname{var}(Y)=\operatorname{var}(\rho X+\beta Z)=p^{2}+\beta^{2} \Rightarrow \beta=\sqrt{1-\rho^{2}}
$$

then $\quad y=\rho x+\sqrt{1-\rho^{2}} z$

$$
\begin{aligned}
(X, Y) & =\mathcal{N}(\overrightarrow{0}, C) \\
\left.Y\right|_{X=x} & =p x+\sqrt{1-\rho^{2}} Z_{N(O, 1)} \quad \Rightarrow f_{Y \mid X}(x, y)=\frac{1}{\sqrt{2 \pi} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-\rho_{x}}{\sqrt{1-\rho^{2}}}\right)^{2}} \\
& \sim \mathcal{N}\left(\rho x, 1-\rho^{2}\right)
\end{aligned}
$$

method (2)

$$
\begin{aligned}
f_{X, Y} & =\frac{1}{\sqrt{1-\rho^{2}} 2 \pi} e^{-\frac{1}{2} \frac{1}{1-\rho^{2}} \vec{x}^{\top}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right] \vec{x}} \\
& =\quad \cdots e^{-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(x^{2}+y^{2}-2 \rho x y\right)} \\
f_{X}(x) & =\int_{\mathbb{R}} d y \frac{1}{\sqrt{1-\rho^{2}} 2 \pi} e^{-\frac{1}{2} \frac{1}{1-\rho^{2}}\left((y-\rho x)^{2}+x^{2}\left(1-\rho^{2}\right)\right)}
\end{aligned}
$$

"it's totally trivial "
© Warning
x_{1}, \ldots, x_{n} normal \nRightarrow they are joust normal Ex. $\varphi(x, y)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}$

Obviously $\int_{\mathbb{R}^{\prime}} \varphi=1$

$$
\psi^{\prime}:=\left.\quad \frac{\varphi}{\left.\right|^{y}}\right|_{\varphi} ^{\varphi} \times
$$

joust normal
$\operatorname{but} \int_{\neq} \psi=\int_{\neq} \psi^{\prime}$

Lee 25
\# Stochastic process
Def Stock. process on (Ω, F, P) is a bunch of random outcomes from same space, the tine evolution

$$
\left(X_{\alpha}(\omega)\right)_{\alpha \geqslant I} \quad \text { typically } I=N, R^{+}
$$

E_{x}. 1. random walk $\left(S_{k}(\omega)\right)_{k=0} \quad S_{n}(\omega)=\sum_{k=n} X_{k}(\omega) \quad X_{k} \sim \operatorname{Bemannli}(0.5)$ S. $(\omega) \leftarrow$ single path, 1 realisation of ${ }^{k \leqslant n}$ the process

2. $I=\mathbb{R}^{2}\left(X_{\vec{a}}(w)\right)_{\vec{a}} \in \mathbb{R}^{2} \leftarrow$ random landscape

If all $X_{\vec{a}}$ independent, we get noise
If we wont object-like surface, something more clever.

- Point process - make most $X_{\vec{k}}$ zero, and get sparse dots $\xrightarrow{\uparrow \cdot \stackrel{\cdot}{\bullet}}$
\leftarrow like flower at rand places
\# Brownian motion (BM)

Def B is a $B M$ if $1 . B_{0}=0$
2. $\forall_{n}, t_{0}<t_{1}<t_{2}, \ldots, t_{n}$

Increments of the process $\rightarrow \underbrace{\left(B_{t_{1}}-B_{t_{0}}\right)}_{D_{2}}, \underbrace{\left(B_{t_{2}}-B_{t_{1}}\right)}_{D_{n}}, \cdots, \frac{\left(B_{t_{n}}-B_{t_{n-1}}\right)}{\left(B_{n}\right)}$
all independent
and $\quad \varepsilon_{\text {variance }}=$ time difference

$$
\forall k, D_{k} \sim \mathcal{N}\left(0, t_{k}-t_{k-1}\right)
$$

3. $\forall w, B_{1}(w)$: $t \mapsto B_{t}(w)$ is continuous

Notice $B_{t_{0}}=0$ so $D_{1}=B_{t_{1}} \sim \mathcal{N}\left(0, t_{1}\right)$
then $\left.\begin{array}{c}B_{t_{1}}+t_{2}=\mathcal{N}\left(0, t_{1}+t_{2}\right) \\ B_{t_{1}}+\left(B_{t_{2}}-B_{t_{1}}\right)\end{array}\right] \begin{aligned} & \text { so across time we } \\ & \text { retain normal dist }\end{aligned}$ \mathbb{R}

viz. future std scales with $\sqrt{\text { time }}$ variance scales with tune One construction:
$X_{k}(\omega) \sin \left(k_{x}\right) \leftarrow$ take infinite fourier series ᄂ $N(0,1)$ with random coefficient

Large scale

\# Conditioned BM ?

Force B. to arrive at y at $t=1 \quad \mathbb{P}[\cdot \mid B,=y]$ What's $B_{t} \sim$? under $B_{1}=y$?

$$
f_{B_{t} \mid B_{1}}(x, y)=\frac{f_{B_{t}, B_{1}}(x, y)}{f_{B},(y)}
$$

But $B_{1}=B_{t}+D$

$$
\text { (Bayes trick) }=\frac{f_{B, 1 B_{t}}(x, y) \cdot f_{B_{t}}(x)}{f_{B,}(y)}
$$

$$
=x+D \sim \mathcal{N}(x, 1-t)
$$

Notation $\varphi_{t}(x):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$

$$
\begin{aligned}
& =\frac{\varphi_{1-t}(y-x) \varphi_{t}(x)}{\varphi_{1}(y)} \\
& =\cdots \\
& =\frac{1}{\sqrt{2 \pi t(1-t)}} e^{-\frac{1}{2} \frac{1}{t(1-t)}(x-t y)^{2}} \\
& \sim \mathcal{N}(t y, t(1-t))
\end{aligned}
$$

So $\mathbb{E}\left[B_{t} \mid B_{1}=y\right]=$ ty

$$
\operatorname{var}\left[B_{t} \mid B_{1}=y\right]=t(1-t)
$$

"brownian bridge"

Lee 26
\# Functional of BM

$$
T_{a} \in(0, \infty] \quad \mid T_{h m} \mathbb{P}\left[T_{a}<\infty\right]=1
$$

time until hitting a
$\mathbb{E}\left[T_{a}\right] \stackrel{?!}{=} \infty \quad \leftarrow$ if ∞ ever show up in weighted avg... boom prob of large T_{a} doesn't decay fast enough
\rightarrow maybe median more reasonable here
Question: $T_{a} \sim$?

$$
\mathbb{P}\left[T_{a} \leqslant t\right]=\text { hopeless }
$$

Try:

$$
\begin{aligned}
\mathbb{P}\left[B_{t}>a\right] & =\mathbb{P}\left[B_{t}>a, T_{a} \leqslant t\right] \\
& =\mathbb{P}\left[B_{t}>a \mid T_{a} \leqslant t\right] \mathbb{P}\left[T_{a} \leqslant t\right] \\
& =\frac{1}{2} \mathbb{P}\left[T_{a} \leqslant t\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \mathbb{P}\left[T_{a} \leq t\right] & =\frac{d}{d t} 2 \mathbb{P}\left[B_{t}>a\right] \\
& =\frac{d}{d t} 2 \int_{a}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
& =\frac{d}{d t} 2 \int_{\frac{a}{\sqrt{t}}}^{\infty} \frac{1}{\sqrt{t}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} \sqrt{t} d u \quad u=\frac{x}{\sqrt{t}} \quad d u=\frac{1}{\sqrt{t}} \\
& =\frac{d}{d t} 2\left(1-\phi\left(\frac{a}{\sqrt{t}}\right)\right) \\
& =2\left(-\phi^{\prime}\left(\frac{a}{\sqrt{t}}\right)\right)\left(\frac{-a}{t^{3 / 2}}\right) \frac{1}{2} \\
f_{T_{a}}(t) & =1(0, \infty](t) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} a^{2} \frac{1}{t}} \frac{a}{t^{3 / 2}}
\end{aligned}
$$

Markov property: if past doesn'' influence future viz. future depend only on present
\# Central Limit Thu (CLT)
Thu Given $\left(X_{k}\right)_{k \geqslant 1}$ i.i.d. with finite $1^{s t}$ and $2^{\text {nd }}$ moment

$$
\begin{aligned}
& S_{n}(\omega)=\sum^{n} X_{k}(\omega) \\
& \mathbb{E} S_{n}=n \mathbb{E} X_{k}=n m \\
& \text { var } S_{n}=n \cdot \text { var } X_{k}=n \sigma^{2}
\end{aligned}
$$ ie. $m=\mathbb{E} X_{k}$ and $\sigma^{2}=\operatorname{var}\left(X_{k}\right)$ finite

Interested in $\tilde{S}_{n}:=\frac{S_{n}-\mathbb{E} S_{n}}{\sqrt{\text { var } S_{n}}}$

$$
\underline{E} \tilde{S}_{n}=0
$$

$\operatorname{var} \tilde{S}_{n}=1$
Then $\lim _{n \rightarrow \infty} \mu_{n} \sim \mathcal{N}(0,1)$
In other words:

$$
\mathbb{P}\left[\tilde{S}_{n} \in[a, b]\right] \underset{n \rightarrow \infty}{\longrightarrow} \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=\phi(b)-\phi(a)
$$

Applications

- Flip biased coin $\operatorname{Ber}(0.6), n=100$

$$
\left.\begin{array}{rl}
\mathbb{P}\left[S_{n}>65\right] & =\mathbb{P}\left[\frac{S_{n}-\mathbb{E} S_{n}}{\sqrt{\operatorname{var} \widetilde{S}_{n}}}>\frac{65-\mathbb{E} S_{n}}{\mathcal{N (0 , 1)}}\right] \frac{\approx 1.02}{\sqrt{\operatorname{var} \widetilde{S}_{n}}}
\end{array}\right]
$$

Lee 27 Convergence in distribution
\# General Framework
Given X, X_{n}
$X_{n} \xrightarrow[(n \rightarrow \infty)]{d} X \Leftrightarrow \forall t$, if $F(t)$ not jump, $F_{X_{n}}(t) \longrightarrow F_{X}(t)$

$$
\begin{aligned}
\text { Ex. } & X: R V \quad X_{n}(\omega)=X(\omega)+\frac{1}{n} \\
& F_{X_{n}}(t) \xrightarrow{\prime \prime} F_{X}(t) \\
& \mathbb{P}\left[X_{n}^{\prime \prime} \leqslant t\right] \\
& \mathbb{P}\left[X^{\prime \prime}+\frac{1}{n} \leqslant t\right] \\
& \mathbb{P}\left[X \leqslant t-\frac{1}{n}\right] \\
& F_{x}^{\prime \prime}\left(t-\frac{1}{n}\right) \quad \lim _{n \rightarrow \infty} F_{x}\left(t-\frac{1}{n}\right)=F_{x}\left(t^{-}\right) \neq F_{x}(t) \quad \text { if } F_{x}(t) \text { rumps }
\end{aligned}
$$

Thus these equivalent

1. $X_{n} \xrightarrow[n \rightarrow \infty]{d} X$
\triangle cannot say $\mathbb{E} X_{n}$ converge because $\varphi(x)=x$ not bounded
\therefore if $X_{n} \sim \mu_{n}, X \sim \mu$,

$$
\mu_{n} \xrightarrow[n \rightarrow \infty]{d} \mu
$$

2. $\forall \varphi, \varphi$ cont. and bounded, $\mathbb{E}\left[\varphi\left(x_{n}\right)\right] \xrightarrow[n \rightarrow \infty]{ } \mathbb{E}[\varphi(x)]$
,$\forall\left[{ }^{i} X_{n}\right] \longrightarrow \mathbb{E}\left[\right.$ finite $\left._{i t X}\right]$ range bounded top \& bottom
3. $\forall t \in \mathbb{R}, \mathbb{E}\left[e^{i t x_{n}}\right] \rightarrow \underset{n \rightarrow \infty}{ } \mathbb{E}\left[e^{i t x}\right]$

$$
\varphi(x)=e^{i t x}=\cos t x+i \sin t x
$$

$\mathbb{E}[\cos t x]+i \mathbb{E}[\sin t x]$ - Fourier transform of x

$$
\Phi_{x}(t)=\mathbb{E}\left[e^{i t x}\right] \in \mathbb{C}
$$

GLT X_{n} ii m, σ finite

$$
\begin{aligned}
& \widetilde{S}_{n} \xrightarrow{d} \mathcal{N}(0,1) \leftrightarrow \forall t, \mathbb{P}\left[\tilde{S}_{n} \leqslant t\right] \underset{n \rightarrow \infty}{\longrightarrow} \int_{-\infty}^{t} \phi_{1}(x) d x=\Phi_{1}(t) \\
& \mathbb{P}\left[a \leqslant \tilde{S}_{n} \leqslant b\right]=\mathbb{P}\left[\tilde{S}_{n} \leqslant b\right]-\mathbb{P}\left[\tilde{S}_{n} \leqslant a\right] \rightarrow \Phi_{1}(b)-\Phi(a)
\end{aligned}
$$

Fact If $X_{n}, X \in \mathbb{Z}$

$$
X_{n} \xrightarrow[n \rightarrow \infty]{d} X \Leftrightarrow \forall k \in \mathbb{Z} \quad \mathbb{P}\left[X_{n}=k\right] \xrightarrow[n \rightarrow \infty]{ } \mathbb{P}[X=k]
$$

for discrete case, just check jump points
Law of small numbers aka law of rare events
Fix n, X_{1}, \ldots, X_{n} iid $\sim \operatorname{Ber}\left(\frac{\lambda}{n}\right) \quad \lambda>0$

$$
S_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binom}\left(n, \frac{\lambda}{n}\right) \quad \text { so } \mathbb{E} S_{n}=\lambda
$$

Question $S_{n} \xrightarrow[n \rightarrow \infty]{ }$?

$$
\begin{aligned}
& \mathbb{P}\left[S_{n}=k\right]=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
&=\frac{n(n-1) \cdots(n-(k-1))}{k!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
&=\frac{\lambda^{k}}{k^{!}} \frac{n(n-1) \cdots(n-(k-1))}{n}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& \underset{n \rightarrow \infty}{ } \frac{\lambda^{k}}{k!} \frac{1}{1} \frac{1}{1} \cdots \frac{1}{1} e^{-\lambda}(1) \\
&=\frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned}
$$

So $B\left(n, \underset{\substack{\frac{\lambda}{n}}}{\rightarrow \rightarrow \infty} \operatorname{Poi}_{o i}(\lambda)\right.$
rare event "porssion approx. of binomial"
(1) In general $\left(1+\frac{z}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} e^{z}$

HW Hint

$$
\begin{aligned}
& \mathbb{P}\left[L_{t} \leqslant s\right] \\
= & \mathbb{P}[\text { not hit } 0 \text { btwn } s \text { and } t] \\
= & \mathbb{P}\left[N_{s, t}\right] \\
= & \int_{\mathbb{R}} \mathbb{P}\left[N_{s, t} \mid B_{s}=x\right] f_{B_{s}}(x) d x \\
= & \int_{\mathbb{R}} \mathbb{P}[\text { not } B M \text { hit }-x \text { within }(t-s) \text { time }] f_{B_{s}}(x) d x \\
= & \int_{\mathbb{R}} \mathbb{P}\left[T_{-x}>t-s\right] f_{B_{s}}(x) d x \\
= & \int_{\mathbb{R}} \mathbb{P}\left[T_{x}>t-s\right] f_{B_{s}}(x) d x
\end{aligned}
$$

Lee 28
\# Recall convergence
$X_{n} \xrightarrow[n \rightarrow \infty]{d} X \Leftrightarrow F_{X_{n}(t)} \xrightarrow[n \rightarrow \infty]{ } F_{X}(t)$ for t without jump in F_{X}

$$
\begin{aligned}
& \Leftrightarrow F_{X_{n}(t)} \rightarrow F_{\mu}(t)=\mu(-\infty, t] \quad \begin{aligned}
& \mu(B)=\mathbb{P} \circ X^{-1}(B) \\
& \mu_{n} \longrightarrow \mu \Leftrightarrow F_{\mu_{n}}(t) \longrightarrow F_{\mu}(t) \quad \forall t \text { with } \underset{\text { no jump }}{\mu(\{t\})=0}
\end{aligned}
\end{aligned}
$$

Ex. $\quad X_{1}, \ldots, X_{n}$ ind with $m, \sigma^{2}<\infty$

$$
\tilde{S}_{n} \xrightarrow{d} N(0,1) \Leftrightarrow \forall t, \mathbb{P}\left[\tilde{S}_{n} \leqslant t\right]=\int_{-\infty}^{t} \varphi,(x) d x=\Phi(t)
$$

\# CLT with error bound
Given X_{1}, \ldots, X_{n} iid with funite $m, \sigma^{2}, \rho=\mathbb{E}\left[|X-\mathbb{E} X|^{3}\right]$

$$
\begin{aligned}
& \Rightarrow \quad\left|\mathbb{P}\left[\tilde{S}_{n} \leqslant t\right]-\Phi(t)\right| \leq \varepsilon_{n}:=\frac{1}{\sqrt{n}} \frac{\rho}{\sigma^{3}} \cdot 3 \text { very slow dealer } \rho \text {, smaller error } \\
& \Leftrightarrow \quad \mathbb{P}\left[\tilde{S}_{n} \leqslant t\right]=\Phi(t) \pm \varepsilon_{n}
\end{aligned}
$$

Ex. $X_{1 . n}$ iii $\sim \operatorname{Ber}\left(\frac{1}{2}\right) \quad m=\frac{1}{2} \quad \sigma^{2}=\frac{1}{4} \quad \rho=\frac{1}{8}$

$$
n:=100
$$

$$
\mathbb{P}\left[S_{n}>55\right]=\mathbb{P}\left[\tilde{S}_{n}>\frac{50-50}{\sqrt{n \cdot \frac{1}{4}}}\right] \pm \varepsilon_{n}
$$

$$
=\mathbb{P}\left[\tilde{S}_{n}>1\right] \pm \varepsilon_{n}
$$

$$
=1-\phi(1) \pm \frac{1}{\sqrt{100}} \cdot \frac{\frac{1}{8}}{\frac{1}{8}} \cdot 3
$$

$$
\approx 1-0.84 \pm \frac{3}{10}
$$

$$
=0.16 \pm 0.3
$$

$$
\in\left[\begin{array}{c}
-0.26,0.46] \\
0.0
\end{array}\right.
$$

If take $n=10000$ get
0.16 ± 0.03
1000000
0.16 ± 0.003
\# Review prob example
$X_{1 . n}$ id \sim Uniform $[0, a]$

$Z_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$
$Z_{n} \xrightarrow[n \rightarrow \infty]{d} a$ ie. $\left(a-Z_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0$
Consider $U_{n}=n\left(a-Z_{n}\right)$
Claim $U_{n} \xrightarrow[n \rightarrow \infty]{ } \exp (\lambda)$
Proof WTS $F_{u_{n}}(t) \underset{n \rightarrow \infty}{\longrightarrow} F_{\exp (x)}(t)$

$$
\begin{aligned}
F_{u_{n}(t)} & =\mathbb{P}\left[n\left(a-z_{n}\right) \leqslant t\right] \\
& =\mathbb{P}\left[z_{n} \geqslant-\frac{t}{n}+a\right] \\
& =1-\mathbb{P}\left[z_{n} \leqslant a-\frac{t}{n}\right] \\
& =1-\mathbb{P}\left[\bigcap_{k=1}^{n}\left\{x_{k} \leqslant a-\frac{t}{n}\right\}\right] \\
& =1-\left(\mathbb{P}\left[x_{1} \leqslant a-\frac{t}{n}\right]\right)^{n} \\
& =1-\left(\frac{a-\frac{t}{n}}{a-0}\right)^{n} \\
& =1-\left(1-\frac{t}{n a}\right)^{n} \\
& =1-e^{-\frac{1}{a} t}
\end{aligned}
$$

So $\lambda=\frac{1}{a}$

$$
U_{n} \sim \exp \left(\frac{1}{a}\right)
$$

\# Another

$$
X_{1 . n} \text { iid } \sim \exp (\lambda) \quad S_{n}=\sum_{i . n} X_{i}
$$

$$
N_{t}(\omega)=\# \text { of points } \leq t \quad N_{t} \in \mathbb{N}
$$

Claim $N_{t} \sim P_{o i}(\lambda)$

$$
\begin{aligned}
\mathbb{P}\left[N_{t}=k\right] & =\mathbb{P}\left[S_{k} \leqslant t, S_{k+1}>t\right] \\
& =\int_{\mathbb{R}^{+}} \mathbb{P}\left[S_{k} \leqslant t, S_{k+1}>t \mid S_{k}=x\right] f_{s_{k}}(x) d x \\
& =\int_{\mathbb{R}^{+}} \mathbb{P}\left[x \leqslant t, x+X_{k+1}>t \mid S_{k}=x\right] f_{s_{k}}(x) d x
\end{aligned}
$$

Lee 29
\# RV value convergence

$$
X_{n}, X
$$

Def (0) $X_{n} \xrightarrow[n \rightarrow \infty]{ } X$ "surely" $\Leftrightarrow \forall \omega, X_{n}(\omega) \xrightarrow[n \rightarrow \infty]{ } X(\omega)$ (1 relax makes sense, but not often used
(3) $X_{n} \xrightarrow[n \rightarrow \infty]{ } X$ " \mathbb{P}-almost surely" $\Leftrightarrow \mathbb{P}\left[\left\{w \mid X_{n}(w) \xrightarrow[n \rightarrow \infty]{\longrightarrow} X(w)\right\}\right]=1$
allow for non-empty non-convergence

$$
\Leftrightarrow \mathbb{P}\left[\xi \omega\left|\left|X_{n}(\omega)-X(\omega)\right| \underset{n \rightarrow \infty}{\longrightarrow}\right| \xi\right]=1
$$

(2) $X_{n} \xrightarrow[n \rightarrow \infty]{ } X$ " in $L^{P "} \Leftrightarrow \mathbb{E}\left[\left|X_{n}-X\right|^{P}\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$ for fixed $p \geqslant 1$
egg. $\mathbb{E}\left[\left|x_{n}-x\right|\right] \underset{n \rightarrow \infty}{ } 0$ with $p=1$
(1) $X_{n} \xrightarrow[n \rightarrow \infty]{ } X$ "in probability" $\Leftrightarrow \forall \delta>0, \mathbb{P}\left[\left|X_{n}-X\right|>\delta\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$

Fact
(3)
(3)

Ex. $\quad X_{n}=X+\frac{1}{n} \quad X_{n} \xrightarrow{?} X$
(1) \checkmark
(1) \checkmark
(2)
(3) \checkmark

Thu weak LLLN (wLLN)

$$
\left(X_{n}\right)_{n \geqslant k} \quad \mathbb{E}\left[X_{k}\right] \stackrel{\forall k}{=} m \quad \text { var } X_{k} \stackrel{\forall k}{=} \sigma^{2}<\infty, \quad \operatorname{cov}\left(X_{i}, X_{j}\right)=0
$$

$\Rightarrow \frac{1}{n} \sum_{k}^{n} X_{k} \xrightarrow[n \rightarrow \infty]{ } m$ in L^{2} (and thus also in prob)

$$
\begin{aligned}
\mathbb{E}\left[\left(\frac{1}{n} \sum_{k}^{n} x_{k}-m\right)^{2}\right] & =\mathbb{E}\left[\left(\frac{\sum X_{k}-n m}{n}\right)^{2}\right] \\
& =\mathbb{E}\left[\frac{1}{n^{2}}\left(\sum\left(X_{k}-m\right)\right)^{2}\right] \\
& =\frac{1}{n^{2}} \mathbb{E}\left[\left(\Sigma \tilde{X}_{k}\right)^{2}\right] \\
& =\frac{1}{n^{2}} \operatorname{var}\left[\sum \tilde{X}_{k}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{1}{n^{2}} \sum \operatorname{var}\left[X_{k}\right] & \leftarrow \text { all covariances } 0 \\
=\frac{1}{n^{2}} n \sigma^{2} \\
=\frac{\sigma^{2}}{n} & \square L^{2} \text { convergence }
\end{array}
$$

$$
\begin{gathered}
\forall x, \quad \varphi(x) \leqslant|x|^{p} \\
\forall w, \quad \varphi(x) \leq|x|^{p} \\
c^{p} \mathbb{P}[|x|>c]=\mathbb{E}[\varphi(x)] \leq \mathbb{E}\left[|x|^{p}\right] \\
\left\lvert\, \mathbb{P}[|x|>c] \leq \frac{\mathbb{E}\left[|x|^{p}\right]}{c^{p}}\right.
\end{gathered}
$$

Alternatively ...

$$
\int e^{\lambda c} \quad \mathbb{P}[x \geqslant c] \leq \frac{1}{e^{\lambda c}} \mathbb{E}\left[e^{\lambda x}\right]
$$

(3) \Rightarrow (1)

$$
\mathbb{P}\left[\left|X_{n}-X\right|>\delta\right] \leqslant \frac{1}{\delta^{p}} \mathbb{E}\left[\left|X_{n}-X\right|^{p}\right] \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

Lee 30
\# Chebusher Application
Recall $\mathbb{P}[|x| \geqslant c] \leqslant \frac{1}{c^{p}} \mathbb{E}\left[|x|^{p}\right]$ for $p>0$
Let X be $R V, \mathbb{E}[|X|]=0 \quad(\Rightarrow$ feels like $X(w) \stackrel{\forall \omega}{=0}$ or... $\mathbb{P}[X=0]=1)$
\rightarrow Maybe $\forall \omega, X(\omega)=0$? False!
Counterexample: $\Omega=[0,1], \mathbb{P}=$ uniform (length of $B \leq[0,1]$)
$X(\omega)=$ if $\omega=0.5$ then 1 else 0

$$
\begin{aligned}
\mathbb{E}|x|=\mathbb{E} X & =1 \cdot \mathbb{P}[x=1]+0 \cdot \mathbb{P}[x=0] \\
& =\mathbb{P}[\{0.5\}] \\
& =0
\end{aligned}
$$

But $\exists \omega, X(\omega) \neq 0$
\rightarrow Instead $\mathbb{P}[x=0]=1 \Leftrightarrow \mathbb{P}[X>0]=0$

$$
\{|x|>0\}=\bigcup_{k}\left\{|x|>\frac{1}{k}\right\}
$$

(\Leftrightarrow) Trivial $\quad(\Rightarrow)$ Let $\omega \in\{|x|>0\}$,
Pick large enough k sit. $\frac{1}{k}<|x(\omega)|$
Then $\omega \in$ RUS
Observe $\bigcup_{k}\left\{|x|>\frac{1}{k}\right\}$ is monotone $\left\{|x|>\frac{1}{k_{1}}\right\} \leq\left\{|x|>\frac{1}{k_{2}}\right\}$ for $k_{2} \geqslant k_{1}$
Then $\mathbb{P}\left[\bigcup_{k}\{|x|\right.$
Jensen's Inequality
Let $\varphi(x)$ be convex fund, X be $R V$ with finite $\mathbb{E} X$.
Thu $\mathbb{E}[\varphi(x)] \geqslant \varphi(\mathbb{E} x)$

Def convex func looks like

take any 2 points, connect them, never goes below curve
always cont, diffable at most points
att: $\forall y_{y}$, make line and push up a support line l_{y},

$$
\begin{aligned}
& -l_{y}(x) \leq \varphi(x) \quad \forall x \\
& -l_{y}(y)=\varphi(y)
\end{aligned}
$$

convex if $\forall y$ we can make such line
Proof (for Thun)

$$
\begin{aligned}
\varphi(x) \stackrel{\forall x}{\geqslant} l_{y}(x) \Rightarrow \varphi(x)^{\forall \omega} l_{y}(x) & \wp^{\text {choose } y=\mathbb{E} X} \\
\Rightarrow \mathbb{E}[\varphi(x)] \geqslant \mathbb{E}[\underbrace{l_{y}(x)}_{a x+b}]=a \mathbb{E} x+b & =l_{y}(\mathbb{E} x) \\
& =l_{y}(y) \\
& =\varphi(y) \\
& =\varphi(\mathbb{E} X)
\end{aligned}
$$

Moments
with $p \geqslant 1, \mathbb{E}\left[|x|^{p}\right]$ is $p^{\text {th }}$ moment

$$
\begin{aligned}
& \mathbb{E}\left[|x|^{p}\right]^{\frac{1}{p}}=\|x\|_{p} \text { is } p^{\text {th }} \text { norm } \\
\mathcal{L}^{p}:= & \left\{x \left\lvert\, \frac{\mathbb{E}\left[|x|^{p}\right]<\infty}{\|x\|_{p}<\infty}\right.\right\}
\end{aligned}
$$

Claim if $1 \leqslant q<p$ then $\mathcal{L}^{q} \supseteq \mathcal{L}^{p}$
Choose $\varphi(x)=|x|^{p / q}, Y=|x|^{q}$ ie. $\mathcal{L}^{\prime} \supseteq \mathcal{L}^{1.5} \supseteq \mathcal{L}^{2} \ldots$ so finite higher th moment \Rightarrow finite lower th moment
Then $\mathbb{E}\left[\left(|x|^{q}\right)^{p / q}\right] \geqslant\left(\mathbb{E}\left[|x|^{q}\right]\right)^{p / q}$

$$
\begin{aligned}
\mathbb{E}\left[|x|^{p}\right]^{\frac{1}{p}} & \geqslant \mathbb{E}\left[|x|^{q}\right]^{\frac{1}{q}} \\
\|x\|_{p} & \geqslant\|x\|_{q}
\end{aligned}
$$

Lee 32 Poission Process
\# Time intervals
$\left(X_{k}\right)_{k \geq 1}$ fid $\sim \exp (\lambda)$
Inter arrival tunes

Arrival times $\left(T_{k}\right)_{k \geqslant 1}$ \& not wolependent!
(1) $T_{n}:=\sum_{k=1}^{n} X_{k} \quad$ shown $f_{T_{n}}(x)=1_{[0, \infty)}(x) \lambda e^{-\lambda e} \frac{(\lambda x)^{n-1}}{(n-1)!}$
(2) Nt $:=\max \left(\max \left\{n \geqslant 1 \mid T_{n} \leqslant t\right\}, 0\right)$
shown $\mathbb{P}\left[N_{t}=k\right]=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}$

$$
=\mathbb{P}\left[T_{k} \leq t, \quad T_{k+1}>t\right]
$$

then condition on T_{k}
\# Markov property +
Thu $\forall t$, the process after t is still a poi (λ) process and is independent from what happened before t.

$\forall n$, w.r.t. $\mathbb{P}\left[\cdot \mid N_{t}=n\right],\left(X_{k}^{\prime}\right)_{k \geqslant 1}$ iid $\sim \exp (\lambda)$ viz. $\left(X_{k}^{\prime}\right)_{k \geqslant 1}$ indep of N_{t}.

Prat Observe $X_{2}{ }^{\prime}, X_{3}{ }^{\prime}, \ldots$ ii $\sim \exp (\lambda)$

\uparrow this actually is not $\sim \exp (\lambda)$, since N_{t+1} depends on other X in fact larger them exp (x) heuristic: more chance to put t in big gap given those gaps

$$
\begin{aligned}
& \mathbb{P}\left[x_{1}^{\prime}>s \mid N_{t}=n\right]=\underbrace{\mathbb{P}\left[X_{1}^{\prime}>s, T_{n} \leq t, T_{n+1}>s\right]} \frac{1}{\mathbb{P}\left[N_{t}=n\right]} \stackrel{\text { ers }}{=} e^{-\lambda s} \\
& =\int_{0}^{\infty} d x f_{T_{n}}(x) \mathbb{P}\left[X_{1}^{\prime}>s, T_{x} / n \leq t, T_{n+1}>t \mid T_{n}=x\right] \\
& =\int_{0}^{t} d x f_{T_{n}}(x) \mathbb{P}[\underbrace{x_{1}^{\prime}>s}_{T_{n+1}>t+s}, T_{n+1}>t \mid T_{n}=x] \\
& =\int_{0}^{t} d x \quad f_{n n}(x) \mathbb{P}[\underbrace{T_{n+1}>t+s}_{x_{n+1}>s+(t-x)} \mid T_{n}=x] \\
& x_{n+1}>s+(t-x) \leftarrow \text { depends on } \sigma\left(x_{1}, \ldots, x_{n}\right) \\
& \leftrightarrow \text { index from } X_{1}, \ldots, X_{n} \\
& =\int_{0}^{t} d x f_{T_{n}}(x) \mathbb{P}\left[x_{n+1}>s+t-x\right] \\
& =\int_{0}^{t} f_{T_{n}}(x) e^{-\lambda(s+t-x)} d x \\
& \mathbb{P}\left[X_{1}^{\prime}>s \mid N_{t}=n\right]=\frac{1}{\mathbb{P}\left[N_{t}=n\right]} \int_{0}^{t} f_{T_{n}}(x) e^{-\lambda(s+t-x)} d x
\end{aligned}
$$

Thu (simplified version)

$$
(\underbrace{\left(N_{t}\right.}_{\text {poi }\left(\lambda_{t}\right)}, \underbrace{\left(N_{t+s}-N_{t}\right)}_{\text {poi }\left(\lambda_{s}\right)}) \text { indep }
$$

Def Poission process I counting process completely characterised by:
$N_{t_{1}}, \underbrace{N_{t_{2}}-N_{t_{1}}}_{\operatorname{Pi}\left(\lambda\left(t_{2}-t, 1\right)\right.}, \underbrace{N_{t_{3}}-N_{t_{2}}}_{D_{i}\left(\lambda\left(t_{2}-t_{1}\right)\right)}, \ldots$ indep

$$
\operatorname{Pii}\left(\lambda\left(t_{2}-t_{1}\right)\right) \quad \operatorname{Pii}\left(\lambda\left(t_{3}-t_{2}\right)\right)
$$

Next step WTS from this def we recover exponential interarrival time

Lee 33 Point process (locally finite)
\# Modelling
Assume finite - functe \# of points in finite interval
$\left(N_{t}\right):=$ \# points in $(0, t)$
$\left(T_{k}\right):=$ location of $k^{\text {th }}$ point
$X_{k}:=$ dist btwn points

$$
\begin{align*}
& N_{t_{1}}, \quad N_{t_{2}}-N_{t_{1}}, \underbrace{N_{t_{3}}-N_{t_{2}}}, \cdots \text { sid } \tag{1}\\
& \text { all } \sim \operatorname{Poi}\left(\lambda\left(t_{k}-t_{k-1}\right)\right)
\end{align*}
$$

\Uparrow
$\left(x_{k}\right)_{k \geqslant 1}$ iii $\sim \exp (\lambda)$
Recall

w.r.t. $\mathbb{P}\left[\cdot\left(N_{t}=n\right], \quad\left(X_{k}^{\prime}\right)_{k \geqslant 1} \sim\right.$ iid $\exp (\lambda)$

Proof (1) counting process def \Rightarrow (2) $\exp (x)$ def

$$
x, \stackrel{?}{\sim} \exp (\lambda)
$$

$$
\begin{aligned}
\mathbb{P}\left[X_{1} \leqslant t\right] & =1-\mathbb{P}\left[X_{1}<t\right] \\
& =1-\mathbb{P}\left[N_{t}=0\right] \\
& =1-e^{-\lambda t} \frac{(\lambda t)^{0}}{0!} \\
& =1-e^{-\lambda t} \leftarrow C D F \text { of } \exp (\lambda)
\end{aligned}
$$

Fact

$\mathbb{P}\left[\cdot \mid N_{t}=n\right] \rightleftharpoons$ under this, what's dist of $\left(T_{1}, \ldots, T_{n}\right)$?
Make n points $U_{1 . n}$ in Unif $[0, t]$ iid, then enumerate them in order V_{1}, \ldots, V_{n}
\# Quines

Interested in dist of queue length.

Recall $f(x)$ in $0(x)$ as $x \rightarrow 0 \Leftrightarrow \frac{f(x)}{x} \underset{x \rightarrow 0}{ } 0$

1. $x^{2}=f(x)$ is $o(x)$ as $(x \rightarrow 0)$
so $x^{2}=o(x)$ as $x \rightarrow 0$
2. $f(x)=\alpha x$ is not $o(x)$
3. $0 \leqslant f(x) \leqslant g(x)$ and $g(x)$ is $o(x) \Rightarrow f(x)$ is $o(x)$

Checking differentiability
write $f(t+x)=f(t)+a x+r(x)$

$$
r(x):=f(t+x)-f(t)-a x
$$

f diffable ot t with deri $a \Leftrightarrow r(x)$ is $0(x)$
Proof $\quad \frac{r(x)}{x}=\frac{f(t+x)-f(t)-a x}{x}=\frac{f(t+x)-f(t)}{x}-a$

$$
\frac{r(x)}{x} \rightarrow 0 \Leftrightarrow \frac{f(t+x)-f(t)}{x}-a \rightarrow 0
$$

Lee 34
\# Small - O
Recall f diffable at t with derivative a ff

$$
f(t+x)=f(t)+a x+o(x)
$$

L going to 0 faster than x as $x \rightarrow 0$
Ex $\quad f(x)=x^{1+\varepsilon} \Rightarrow f(x)$ is $o(x)$

$$
f(x)=\alpha x, \alpha \neq 0 \quad \Rightarrow \quad f(x) \text { is not } o(x)
$$

f, g both $o(x) \Rightarrow f(x)+g(x)$ in $o(x)$
$0 \leqslant f \leqslant g$ and g is $o(x) \Rightarrow f$ is $o(x)$
$O(x) \underset{x \rightarrow 0}{ } 0$ Cotherwise $\frac{O(x)}{x} \nrightarrow 0$

$$
\begin{aligned}
e^{-\lambda x} & =1-\lambda x+o(x) \quad(\text { at } t=0) \\
\lambda x e^{-\lambda x} & =\lambda x-\underbrace{\lambda^{2} x^{2}}_{o(x)}+\underbrace{\lambda x o(x)}_{o(x)} \\
& =\lambda x+o(x)
\end{aligned}
$$

\# Poission Process Characterisation
Let $\left(N_{t}\right)_{+}$be point process with indep mcrements and $\forall t$,

1. $\mathbb{P}\left[N_{t+x}-N_{t}=1\right]=\mathbb{P}[\Delta N=1]=\lambda x+o(x)$ as $x \rightarrow 0$
2. $\mathbb{P}[\Delta N \geqslant 2]=O(x)$ small tolerance \mathfrak{r} and 2 implies this most of the tine
3. $\mathbb{P}[\Delta N=0]=1-\lambda x+o(x)$

Claim $N_{t} \sim \operatorname{Poi}(\lambda t)$ and $\left(N_{t}\right)$ is $\operatorname{Por}(\lambda)$ process
Let $k \geqslant 0 . \mathbb{P}\left[N_{t}=k\right]=: p_{k}(t) \quad \cdots$ can we fund $p_{k}^{\prime}(t)$?

$$
\begin{aligned}
P_{k}(t+x)=\mathbb{P}\left[N_{t+x}=k, \Delta N=0\right] & +\mathbb{P}\left[N_{t+x}=k, \Delta N=1\right] \\
& +\mathbb{P}\left[N_{t+x}=k, \Delta N \geqslant 2\right] \\
=\mathbb{P}\left[N_{t}=k, \Delta N=0\right] & +\mathbb{P}\left[N_{t+x}=k, \Delta N=1\right] \\
& +\mathbb{P}\left[N_{t+x}=k, \Delta N \geqslant 2\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{P}\left[\Delta N=0 \mid N_{t}=k\right] \mathbb{P}\left[N_{t}=k\right] \\
& +\mathbb{P}\left[N_{t+x}=k, \Delta N=1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(1-\lambda x+o(x)) p_{k}(t)+\mathbb{P}\left[N_{t}=k-1, \quad \Delta N=1\right]+o(x) \\
& =(1-\lambda x+o(x)) p_{k}(t)+\mathbb{P}\left[\Delta N=1 \mid N_{t}=k-1\right] \mathbb{P}\left[N_{t}=k-1\right]+o(x) \\
& =(1-\lambda x+o(x)) p_{k}(t)+(\lambda x+o(x)) p_{k-1}(t)+o(x) \\
& \frac{p_{k}(t+x)-p_{k}(t)}{x}=\frac{(1-\lambda x+o(x)) p_{k}(t)+(\lambda x+o(x)) p_{k-1}(t)+o(x)-p_{k}(t)}{x} \\
& =-\lambda p_{k}(t)+\lambda p_{k-1}(t)+\frac{o(x)}{x} \\
& \xrightarrow[x \rightarrow 0]{ }-\lambda p_{k}(t)+\lambda p_{k-1}(t) \\
& =p_{k}^{\prime}(t) \\
& p_{k}^{\prime}(t)=-\lambda p_{k}(t)+\lambda p_{k-1}(t) \quad \text { for } k \geqslant 1 \\
& p_{k}^{\prime}(t)=-\lambda p_{k}(t) \quad \text { for } k=0 \\
& \left\{\frac{d}{d t} \vec{p}(t)=\left[\begin{array}{c}
p_{0}^{\prime}(t) \\
P_{1}^{\prime}(t) \\
p_{2}^{\prime}(t) \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
-\lambda & 0 & 0 & 0 & \cdots \\
\lambda & -\lambda & 0 & 0 & \cdots \\
0 & \lambda & -\lambda & 0 & \cdots \\
0 & 0 & \lambda & -\lambda & \cdots
\end{array}\right]\left[\begin{array}{c}
p_{0}(t) \\
p_{1}(t) \\
p_{2}(t) \\
\vdots
\end{array}\right]\right. \\
& \vec{p}_{0}(0)=\mathbb{P}\left[N_{0}=0\right]=1 \\
& \vec{p}_{0}(k)=\mathbb{P}\left[N_{0}=0\right]=0 \quad \text { for } k=1
\end{aligned}
$$

! solve

$$
\Rightarrow \forall k \geqslant 0, p_{k}(t)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

\# M/M/I Queues
exponential dequeue

$$
M / M / 1
$$

exponential enqueue 1 processor to dequeue
$Q_{t}(\omega)$ - queue size at time t
$T_{1}, T_{2}, \ldots \sim \operatorname{Poi}(\lambda)$ process enqueue time
$\left(S_{k}\right)_{k \geqslant 1}$ id $\sim \exp (\mu)$ service time
Assume $\mu>\lambda$

Poi (λ)

Indeed $S_{k} \sim \exp (\lambda)$ because we can condition on T_{k}

$$
\begin{aligned}
\mathbb{P}\left[S_{1}>u\right] & =\int_{0}^{\infty} \mathbb{P}\left[S_{1}>u \mid T_{1}=t\right] f_{\tau_{1}}(t) d t \\
& =\int_{0}^{\infty} \mathbb{P}\left[S_{1}>u\right] f_{\tau_{1}}(t) d t \\
& =\int_{0}^{\infty} e^{-\mu u} f_{\tau_{1}}(t) d t \\
& =e^{-\mu u}
\end{aligned}
$$

\# Distribution of $Q_{t} \in \mathbb{N}$
Rewriting trick:

$$
\mathbb{P}\left[Q_{t}=k\right]=p_{k}(t)
$$

$$
\mu_{Q_{t}}=\vec{p}(t)=\left[\begin{array}{c}
p_{1}(t) \\
p_{1}(t) \\
\vdots
\end{array}\right]
$$

count currivals by
Consider $k \geqslant 1$

$$
\begin{aligned}
p_{k}(t+x)= & \mathbb{P}\left[Q_{t+x}=k\right] \\
= & \mathbb{P}\left[Q_{t}=k, \Delta N=0, \Delta M=0\right] \\
& +\mathbb{P}\left[Q_{t}=k-1, \Delta N=1, \Delta M=0\right] \\
& +\mathbb{P}\left[Q_{t}=k+1, \Delta N=0, \Delta M=1\right] \\
& +\mathbb{P}\left[Q_{t+x}=k, \Delta N=1, \Delta M=1\right] \\
& +\underbrace{\mathbb{P}\left[Q_{t+x}=k, \Delta N \geqslant 2, \Delta M \geqslant 2\right]}_{\leqslant M=M_{t+x}-M} \\
& \leqslant O \mathbb{P}[\Delta N \geqslant 2]+\mathbb{P}[\Delta M \geqslant 2] \text { which is sisal }
\end{aligned}
$$

$$
=\mathbb{P}\left[\Delta N=0, \Delta M=0 \mid Q_{t}=k\right] \mathbb{P}\left[Q_{t}=k\right]
$$

$$
+\vdots \text { sumibar }
$$

$$
=\mathbb{P}[\Delta N=0] \mathbb{P}[\Delta M=0] \mathbb{P}\left[Q_{t}=k\right]
$$

$+\vdots$ similar

$$
\begin{aligned}
= & (1-\lambda x+o(x))(1-\mu x+o(x)) p_{k}(t) \\
& +(\lambda x+o(x))(1-\mu x+o(x)) p_{k-1}(t) \\
& +(1-\lambda x+o(x))(\mu x+o(x)) p_{k+1}(t) \\
& +(\lambda x+o(x))(\mu x+o(x)) p_{k}(t) \\
= & p_{k}(t)-(\lambda+\mu) x p_{k}(t)+o(x) \\
& +\lambda x p_{k-1}(t)+o(x) \\
& +\mu x p_{k+1}(t)+o(x) \\
& +o(x)
\end{aligned}
$$

$$
\begin{aligned}
& p_{k}(t)=(\lambda+\mu) \times p_{k}(t)+o(x) \\
& +\lambda x p_{k-1}(t)+o(x) \\
& +\quad x p_{k+1}(t)+o(x) \\
& +O(x) \\
& \frac{1}{x}\left(p_{k}(t+x)-p_{k}(t)\right)=\frac{1}{x}\left(-(\lambda+\mu) x p_{k}(t)+\lambda \times p_{k-1}(t)+\mu x p_{k+1}(t)+o(x)\right) \\
& \text { as } x \rightarrow 0 \text {, } \\
& \left(p_{k}(t+x)-p_{k}(t)\right) \rightarrow\left(-(\lambda+\mu) p_{k}(t)+\lambda p_{k-1}(t)+\mu p_{k+1}(t)\right) \\
& {\left[\begin{array}{c}
\vdots \\
\frac{d}{d t} \vec{p}(t) \\
\vdots
\end{array}\right]=\left[\begin{array}{ccccc}
-\lambda & \mu & 0 & & \\
\lambda & -(\lambda+\mu) & \mu & 0 & \cdots \\
0 & \lambda & -(\lambda+\mu) & \mu & 0 \\
\vdots & 0 & \lambda & -(\lambda+\mu) & \mu \\
\vdots & \vdots & & & \ddots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
\vec{p}(t) \\
\vdots
\end{array}\right]}
\end{aligned}
$$

Fact Q_{t} always converge to equilibrium distribution
Solve with $\frac{d}{d t} \vec{p}(t)=0$ for $\vec{p}(t)$

Lee 36 Queuing Process
\# M/M/I reminder

Poi (λ)
Poi (μ)
potential departures

$$
\begin{gathered}
\mu>\lambda \\
O_{0} \sim \pi_{\uparrow}^{(0)}
\end{gathered}
$$

arbitrary dist in \mathbb{N}
random initial queue size

Last time:

$$
\begin{aligned}
& {\left[\begin{array}{c}
{\left[\begin{array}{c}
p_{0}^{\prime}(t) \\
p_{1}^{\prime}(t) \\
p_{2}^{\prime}(t) \\
\vdots \\
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{ccccc}
-\lambda & \mu & 0 & & \cdots \\
\lambda & -(\lambda+\mu) & \mu & 0 & \cdots \\
0 & \lambda & -(\lambda+\mu) & \mu & 0 \\
\vdots & 0 & \lambda & -(\lambda+\mu) & \mu \\
\vdots & & \ddots
\end{array}\right]\left[\begin{array}{c}
p_{0}(t) \\
p_{1}(t) \\
p_{2}(t) \\
\vdots \\
\frac{d}{d t} \vec{p}(t)
\end{array}\right]} \\
& \\
& \text { We know } \vec{p}(0)=\pi=\left[\begin{array}{c}
\pi_{0} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\mathbb{P}\left[Q_{0}=0\right] \\
\vdots
\end{array}\right]
\end{aligned}
$$

\# Solving this
Thu \exists ! solution $\vec{p}(t)=\left[e^{t A}\right] \vec{p}(0)$
$\exists!\quad \pi^{*}, \quad \vec{p}(t) \underset{t \rightarrow \infty}{\longrightarrow} \Pi^{*}$

Consider $\vec{p}(0)=\pi^{*}$. Then $\forall t, \vec{p}(t)=\pi^{*}$

$$
\frac{d}{d t} \vec{p}(t)=\overrightarrow{0}=A \vec{p}(t)=A \pi^{*}=0
$$

solve for π^{*},

$$
\begin{align*}
& \left\{\begin{array}{l}
0=-\lambda \pi_{0}^{*}+\mu \pi_{1}^{*} \\
0=\lambda \pi_{0}^{*}-(\lambda+\mu) \pi_{1}^{*}+\mu \pi_{2}^{*} \\
\vdots
\end{array}\right. \tag{1}\\
& \begin{aligned}
&(1) \Rightarrow \pi_{1}^{*}=\left(\frac{\lambda}{\mu}\right) \pi_{0}^{*} \\
&(2) \Rightarrow \pi_{2}^{*}=\left(\frac{\lambda}{\mu}\right)^{2} \pi_{0}^{*} \\
& \text { (1) } \Rightarrow \Pi_{k}^{*}=\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}^{*} \\
& 1= \sum \Pi_{k}^{*} \\
&= \Pi_{0}^{*} \sum_{k=0}\left(\frac{\lambda}{\mu}\right)^{k} \\
&=\Pi_{0}^{*} \frac{1}{1-\frac{\lambda}{\mu}}
\end{aligned}
\end{align*}
$$

So $\pi_{0}^{*}=1-\frac{\lambda}{\mu}$

$$
\Pi_{k}^{*}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{k}
$$

Let $T \sim$ geom ($1-\frac{\lambda}{\mu}$)

$$
\mathbb{P}[T=k+1]=\left(\frac{\lambda}{\mu}\right)^{k+1-1}\left(1-\frac{\lambda}{\mu}\right)=\mathbb{P}[Q=k]
$$

Let $Q=T-1$
So $\pi^{*}-Q$

$$
\begin{aligned}
& \mathbb{E} Q=\frac{\mu}{\mu-\lambda} \\
& \operatorname{var} Q=\operatorname{var} T=\frac{\frac{\lambda}{\mu}}{\left(1-\frac{\lambda}{\mu}\right)^{2}}
\end{aligned}
$$

To simulate stable queue generate $Q_{0} \sim \pi^{*}$
\# Markov Property
Def Process $\left(X_{t}\right)$ has Markov if (equivalent defunctions)

1. Condition on state at time $t \quad\left(X_{t}=\cdot\right)$, then past and future are independent
2. The future depend on only the present among \&past, present\} events
present past
Ex $\mathbb{P}\left[x_{4}>y \mid N_{t}=2, T_{1} \leqslant x\right]=\mathbb{P}\left[x_{4}>y \mid N_{t}=2\right]$
Fact Poi process, queuing process, $B M$ all have this property

Def Strong Markov property
If the Markov property is still true for random time.
Markov: indep w.r.t. fixed t
Strong Markov: indep w.r.t. random time e.g. T_{k}
Thu this holds if T_{k} doesn't depend on own future "stopping time"

$\int L_{t}(\omega)$ - last visit to 0 depends on own future, since there cannot be further visit to 0 before t. not a stopping time!

Ex.

(see HW)
${ }^{3} \mathrm{Ta}_{a}$ - hitting time to a. Once hit the future doesn't matter stopping time
$\int U_{k}$ - start of service of $k^{\text {th }}$ customer in queue
stopping time

Lee 37 Kolmogorov's 0-1 Law
"In the realm of abstract nonsense"
How does one justify the existence of randomness?
How does random, chaotic, independent agents give rise to determinism
\rightarrow Statistical mechanics
\rightarrow Fluid
\rightarrow Economics
\rightarrow Population dynamics
Full randomness to complete deterministic

* Definctions

Consider abstract RVS $\left(X_{k}\right)_{k \geqslant 1}$ describing state of some system

$$
X_{k}: \Omega \rightarrow(S, B)
$$

state $I T$ space

$$
\begin{aligned}
\sigma\left(X_{k}\right)= & \left\{\left\{\omega \mid X_{k}(\omega) \in B\right\} \mid B \in \mathbb{B}\right\} & \text { Think: } & k \text { - time } \\
= & \text { events depending on } X_{k} \text { only" } & & S \text { - } \\
& \text { If } X_{k} \text { know, we know if they are } & & B \text {-interval } \\
& \text { in } \sigma\left(X_{k}\right) \text { or not } & &
\end{aligned}
$$

Note $\sigma\left(x_{1}\right) \cup \sigma\left(x_{2}\right) \subseteq \sigma\left(x_{1}, x_{2}\right)$

$$
\sigma\left(\sigma\left(x_{1}\right), \sigma\left(x_{2}\right)\right)=\sigma\left(x_{1}, x_{2}\right)
$$

Consider $\quad \frac{X_{1}, \ldots, X_{n}}{\frac{F_{n}:=\sigma\left(X_{1}, \ldots, X_{n}\right)}{} X_{n+1}, \ldots}$
" "sigma field up to $n "$
$="$ observable events when knowing X_{1}, \ldots, X_{n} "

$$
F^{n}:=\sigma\left(x_{n+1}, \ldots\right)
$$

" "after time observable events"

$$
\begin{aligned}
& \mathcal{F}_{\infty}:=\sigma\left(X_{1}, \ldots\right) \\
&=\text { "all observable events" } \\
& \mathcal{F}^{*}:=\bigcap_{n} \mathcal{F}^{n} \quad \text { "asymptotic } \sigma \text {-field" } \\
& \\
& E x . \quad X_{1}, \ldots \in \mathbb{R} \\
& A=\left\{\omega \mid \exists \text { infinitely field" } k \text { st. } X_{k}(\omega) \geqslant 0\right\} \\
& \quad \operatorname{claim} \quad \forall n, A \in F^{n} \Rightarrow A \in F^{*}
\end{aligned}
$$

whether \exists infinitely many only depends on future. it doesn't depend on any funte collection of $X_{k} s$.
$E_{x .} \quad A=\left\{\omega \mid X_{k}(\omega) \rightarrow a\right\}$
convergence only depends on tail
Observe $F^{*} \subseteq F^{n} \subseteq F_{\infty}$
\#Kolmogorov's
Consider indep. RVs $\left(X_{k}\right)_{k 31}$ indep
Thu $A \in F^{*} \Rightarrow P(A) \in\{0,1\}$
Proof Consider

$$
\underbrace{\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)}_{\text {independent from } F^{n}}, \frac{\sigma\left(X_{n+1}\right), \ldots}{F^{n}}
$$

So $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$ and F^{*} still undep since $F^{*} \subseteq F^{n}$ Then $\begin{gathered}\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n+1}\right) \\ \sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n+2}\right)\end{gathered} \stackrel{\text { indep }}{\stackrel{\text { indep }}{\longleftrightarrow}} F^{*}$
Then $F^{*} \xrightarrow{\text { index }} \underbrace{\sigma\left(X_{1}, \ldots, X_{n}\right)}_{=F_{\infty}} \quad \forall n$
But $F_{\infty} \stackrel{\text { indep }}{\longleftrightarrow} F^{*}$. Yet $F_{\infty} \Rightarrow A \in F^{*}$, so A indep with itself

$$
\begin{aligned}
\mathbb{P}[A \cap A] & =\mathbb{P}[A] \mathbb{P}[A] \quad \text { Anything in } F^{*} \text { is indep with itself ! } \\
\mathbb{P}[A] & =\mathbb{P}[A]^{2} \\
\mathbb{P}[A] & \in\{0,1\}
\end{aligned}
$$

