Improved Neural Protoform **Reconstruction via Reflex Prediction**

Liang Lu, Jingzhi Wang, David R. Mortensen

Language Technologies Institute, Carnegie Mellon University {lianglu, jingzhi3, dmortens}@cs.cmu.edu

LREC-COLING 2024

Turino, Italy

Abstract

Protolanguage reconstruction is central to historical linguistics. The comparative method, one of the most influential theoretical and methodological frameworks in the history of the language sciences, allows linguists to infer protoforms (reconstructed ancestral words) from their reflexes (related modern words) based on the assumption of regular sound change. Not surprisingly, numerous computational linguists have attempted to operationalize comparative reconstruction through various computational models, the most successful of which have been supervised encoder-decoder models, which treat the problem of predicting protoforms given sets of reflexes as a sequence-to-sequence problem. We argue that this framework ignores one of the most important aspects of the comparative method: not only should protoforms be inferable from cognate sets (sets of related reflexes) but the reflexes should also be inferable from the protoforms. Leveraging another line of research—reflex prediction—we propose a system in which candidate protoforms from a reconstruction model are reranked by a reflex prediction model. We show that this more complete implementation of the comparative method allows us to surpass state-of-the-art protoform reconstruction methods on three of four Chinese and Romance datasets.

Llama

Alpaca

Images: Wikipedia

capra 'goat' /kapra/ (Italian)

cabra 'goat' /kabra/ (Spanish)

Example words: (Campbell 2021)

capra 'goat' /kapra/ (Italian)

capo 'end, chief' /kapo/ (Italian)

cabra 'goat' /kabra/ (Spanish)

cabo 'end, tip' /kabo/ (Spanish)

Example words: (Campbell 2021)

A window into human past

- **Evolutionary Biology**
- **Population Genetics**
- Historical Linguistics

A window into human past

Historical Linguistics

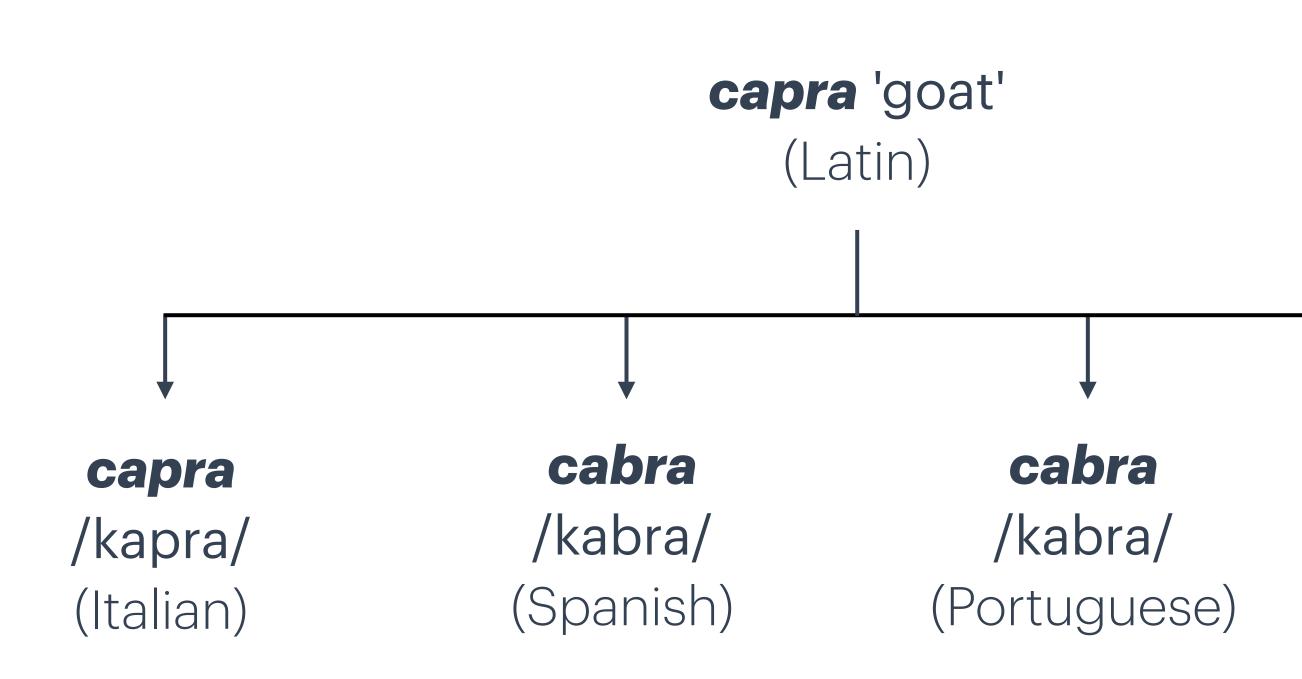
LREC-COLING 2024 7

Improved Neural Protoform Reconstruction via Reflex Prediction

Evolutionary Biology

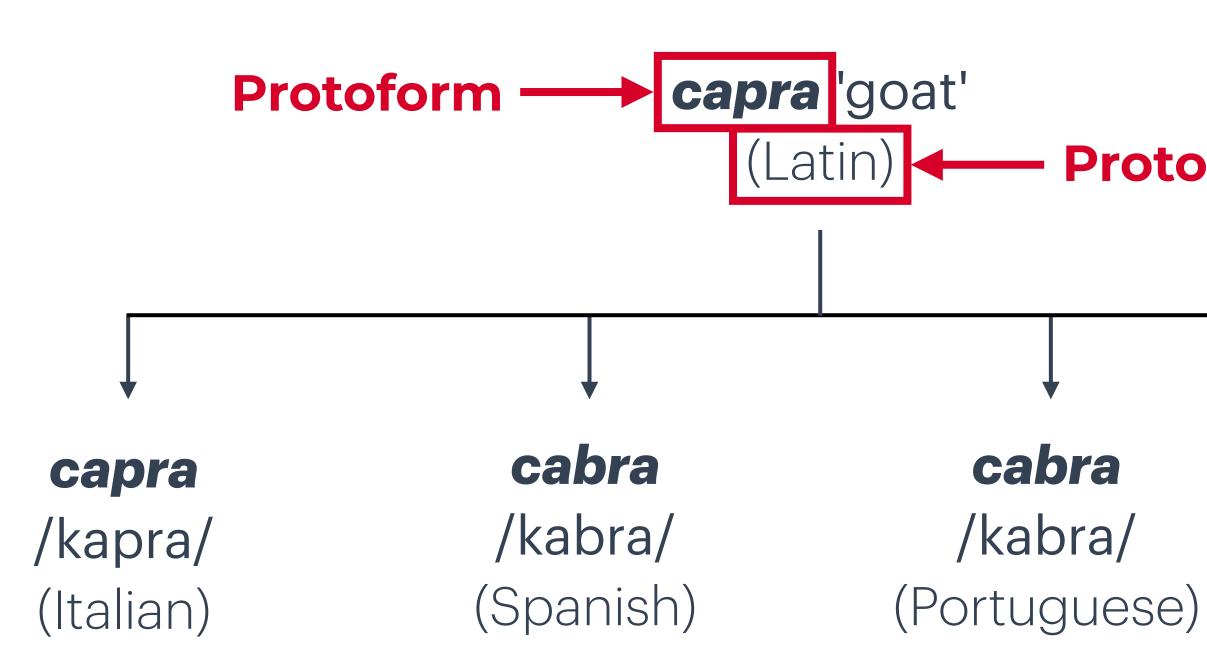
Population Genetics

Protolanguage: a historical language **Daughter languages:** descendants of a protolanguage **Protoform:** a reconstructed¹ ancestral word **Reflexes:** descendent words in daughter languages **Cognate set:** a set of reflexes with the same ancestor



chèvre /ʃεvr(ə)/ (French)

Example: (Campbell 2021)



Protolanguage

chèvre /∫εvr(ə)/ (French)

Example: (Campbell 2021)



Example: (Campbell 2021)

The Comparative Method

The comparative method (Anttila, 1989; Campbell, 2021) uses reflexes in cognate sets to reconstruct the protoforms in a way that:

- Maximizes the regularity of sound changes from reconstructions to reflexes

Minimizes the phonetic edits between the reconstructions and their reflexes

"Every sound change, in so far as it proceeds mechanically, is completed in accordance with laws admitting of no exceptions; i.e. the direction in which the change takes place is always the same for all members of a language community, apart from the case of dialect division, and all words in which the sound subject to change occurs in the same conditions are affected by the change without exception."

-H. Osthoff and K. Brugmann, Morphologische Untersuchungen auf dem Gebiete der indogermanischen Sprachen i, Leipzig, 1878 (quoted in Szemerény, 1996, p. xiii)

Computational Protoform Reconstruction

- Proposed as a computational task (Durham and Rogers, 1969)
- Sound change probabilistic models with a Monte Carlo inference algorithm that operates on phylogenetic trees (Bouchard-Côté et al., 2013)
- Sequence comparison and phonetic alignment (List et al., 2022a)
- Conditional random field to label each position in the reflex with a protoform token (Ciobanu and Dinu, 2018; Ciobanu et al., 2020)
- Sequence-to-sequence formulation: concatenate the whole cognate into one sequence, with separators and daughter language tags (Meloni et al., 2021)
 - Input: *[Cantonese]:mei̯4*[Mandarin]:mei̯٧*[Wu]:me̯4* Output: mij³

'in]:mej*[Wu]:mẹ* (the 煝 cognate set from WikiHan)

Neural Protoform Reconstruction

[Cantonese]:mei/[Mandarin]:mei/*[Wu]:me/* Input: mij³ Output:

- RNN with language embedding (Meloni et al., 2021)
- Transformer (Kim et al., 2023)
- VAE (Variational Autoencoder) (Cui et al., 2022)

Neural Protoform Reconstruction

[Cantonese]:mei/[Mandarin]:mei/*[Wu]:me/* Input: mij³ Output:

- **RNN with language embedding** (Meloni et al., 2021)
- Transformer (Kim et al., 2023)
- VAE (Variational Autoencoder) (Cui et al., 2022)

Sequence-to-sequence

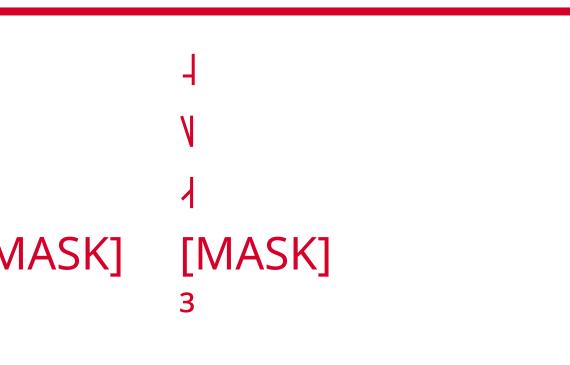
Neural Protoform Reconstruction

[Cantonese]:mei/[Mandarin]:mei/*[Wu]:me/* Input: mij³ Output:

- **RNN with language embedding** (Meloni et al., 2021) Transformer (Kim et al., 2023)
- VAE (Variational Autoencoder) (Cui et al., 2022)

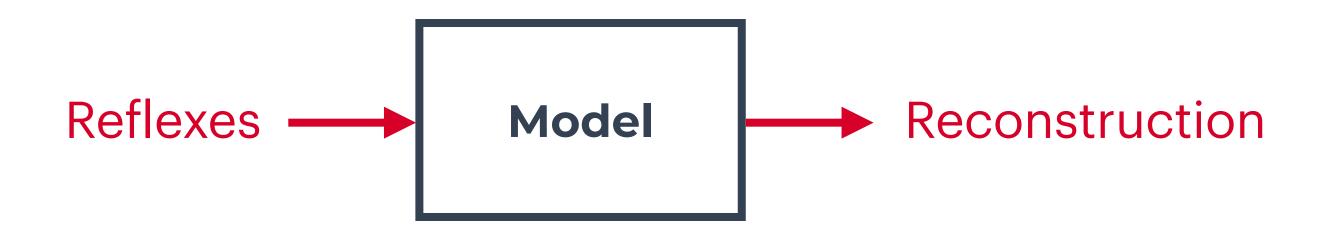
Input:	[Cantonese]	m	е	į
	[Mandarin]	m	е	į
	[Wu]	m	ę	-
	[Middle Chinese]	[MASK]	[MASK]	[N
Output:	[Middle Chinese]	m	i	j
Cogn	nate Transforme	er (Akava	arapu ar	nd E

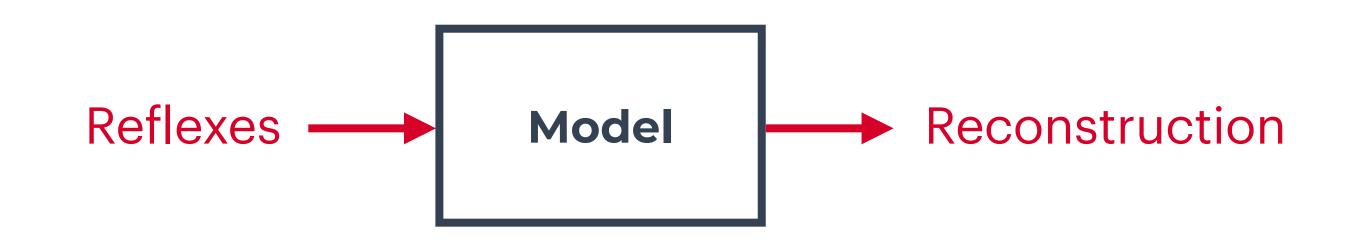
Sequence-to-sequence

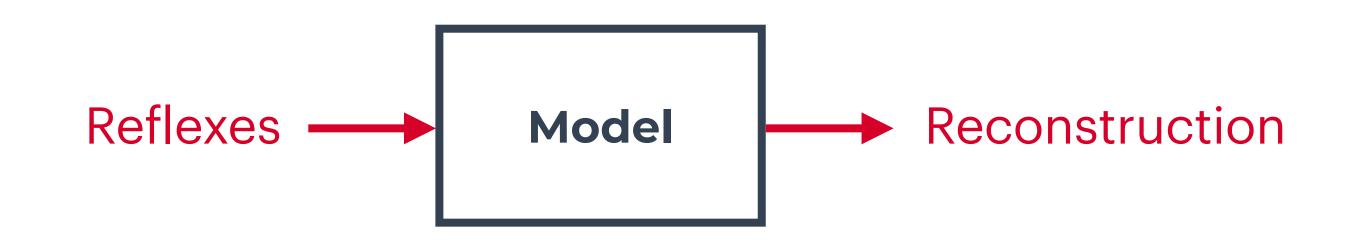


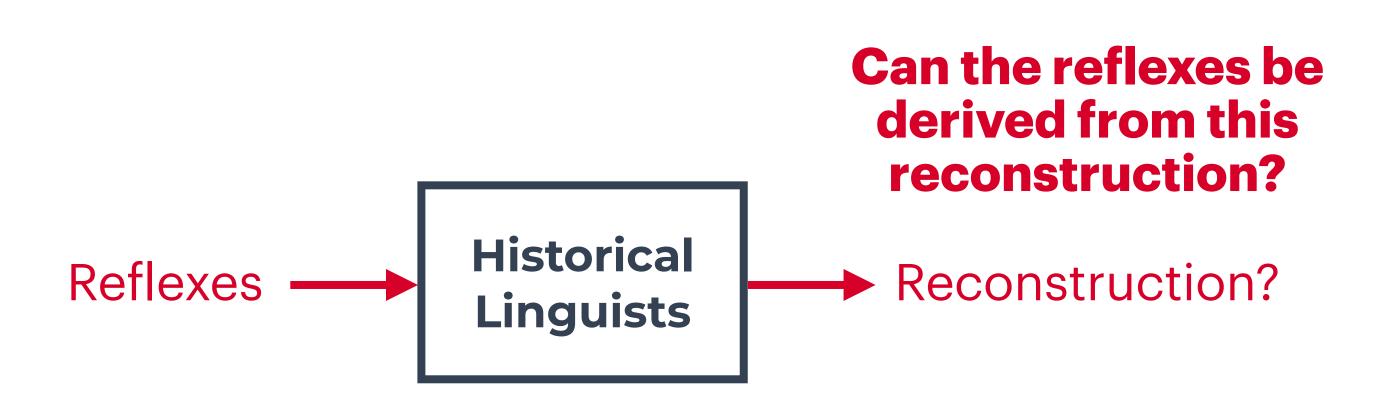
Multi-sequence encoder with classifier head

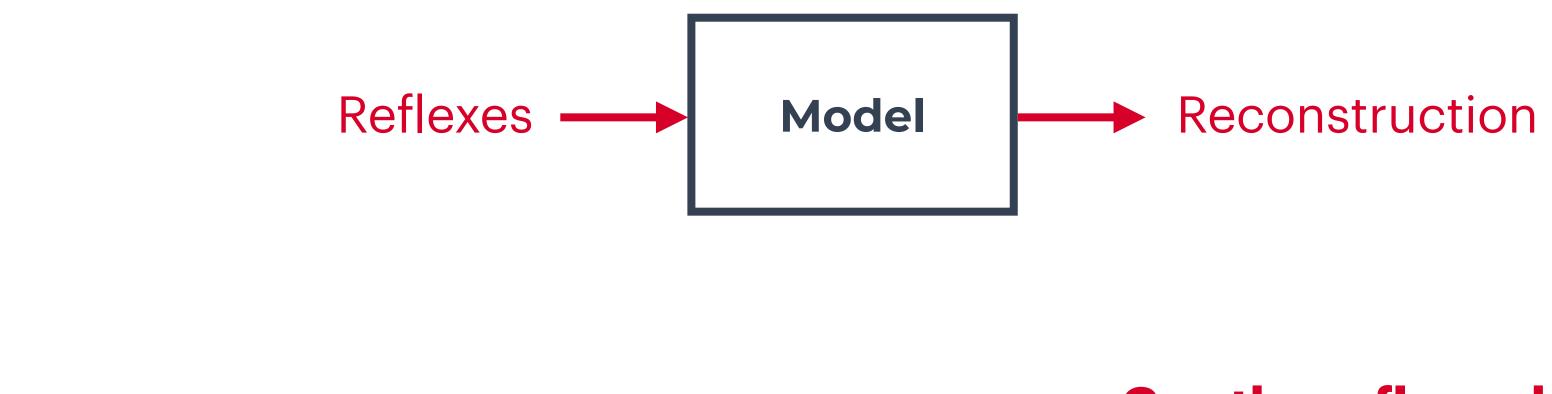
Bhattacharya, 2023)

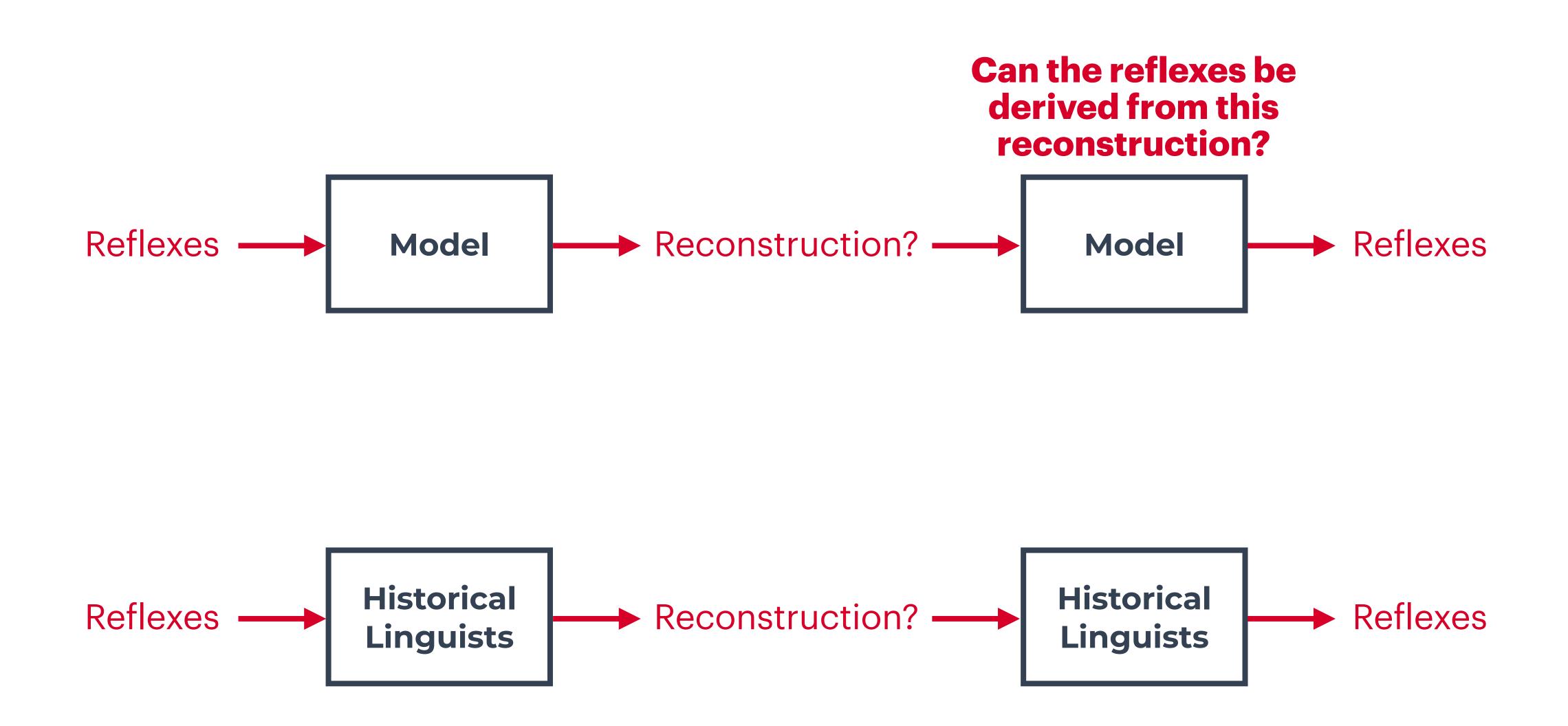


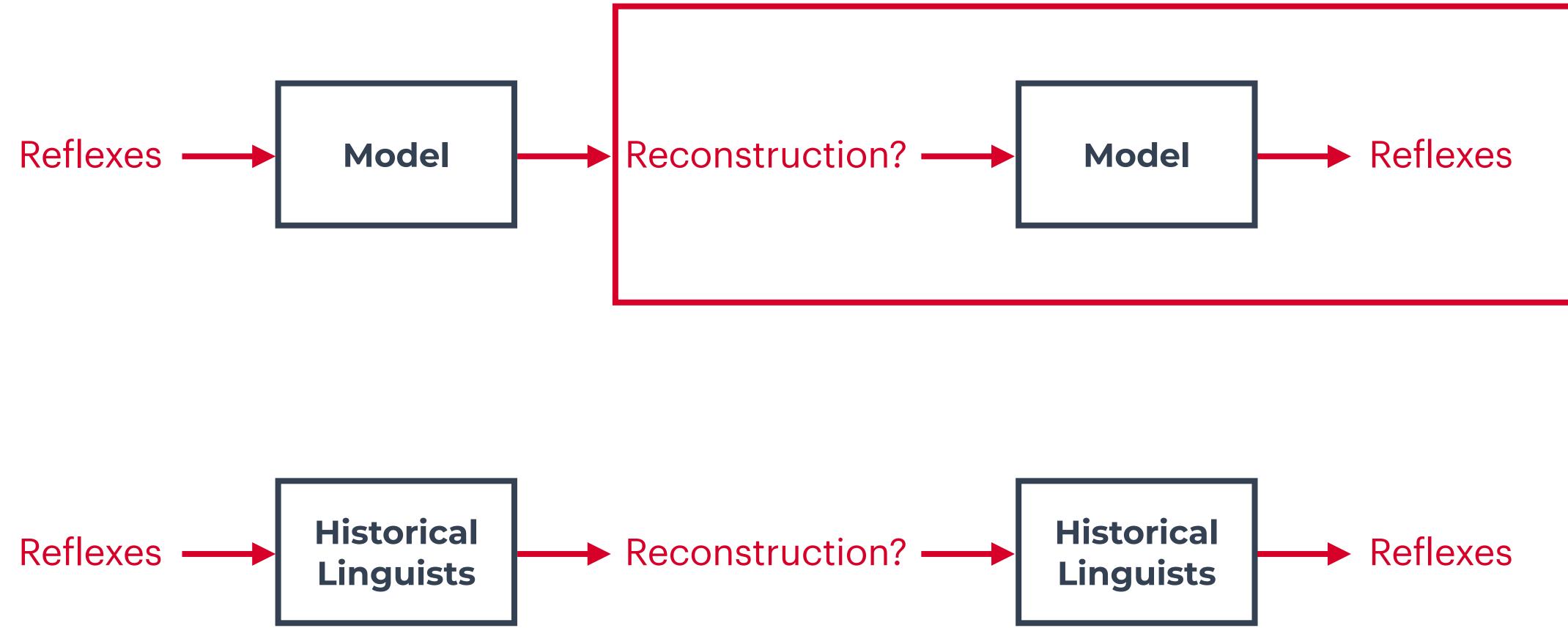












Reflex prediction

Computational Reflex Prediction

- Rule-based (Marr and Mortensen 2020, 2023)
- Semi-automatic: automatic alignment and identification of sound correspondences on manually annotated cognate sets (Bodt and List, 2022)
- LSTM encoder-decoder augmented with part of speech and word embeddings (Cathcart and Rama, 2020)
- 2023)

Replication of Cathcart and Rama (2020) with GRU and Transformer (Arora et al.,

Computational Reflex Prediction

- Rule-based (Marr and Mortensen 2020, 2023)
- Semi-automatic: automatic alignment and identification of sound correspondences on manually annotated cognate sets (Bodt and List, 2022)
- LSTM encoder-decoder augmented with part of speech and word embeddings (Cathcart and Rama, 2020)
- 2023)

Replication of Cathcart and Rama (2020) with GRU and Transformer (Arora et al.,

Representing Reflex Prediction

Reconstruction

[Cantonese]:mei̯4[Mandarin]:mei̯8*[Wu]:me̯4* Input: mij³ Output:

Reflex Prediction

mij³ Input: Output:

mij³ Input: Output:

mij³ Input: Output:

Representing Reflex Prediction

Reconstruction

[Cantonese]:mei/[Mandarin]:mei/*[Wu]:me/* Input: Output: mij³

Reflex Prediction

Input: [Cantonese] mij³ Output: mei-

[Mandarin] mij³ Input: Output: meil

[Wu] mij³ Input: Output: mel

Workflow

Predict the protoform

Technique

Sequence-to-sequence transduction

Workflow

1. Propose multiple protoform candidates

2. Verify the phonetic plausibility of the candidates

3. Adjust the likelihood of each candidate and make a prediction

Technique

Workflow

1. Propose multiple protoform candidates

2. Verify the phonetic plausibility of the candidates

3. Adjust the likelihood of each candidate and make a prediction

Technique

Sequence-to-sequence transduction with beam search

Workflow

1. Propose multiple protoform candidates

2. Verify the phonetic plausibility of the candidates

3. Adjust the likelihood of each candidate and make a prediction

Technique

Sequence-to-sequence transduction with beam search

Reflex prediction

Workflow

1. Propose multiple protoform candidates

2. Verify the phonetic plausibility of the candidates

3. Adjust the likelihood of each candidate and make a prediction

Technique

Sequence-to-sequence transduction with beam search

Reflex prediction

Reranking

A Reranked Reconstruction System

Reflexes in the 必 <i>pit</i> 入 'must' cognate set							
Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang
piːt1	pit ⊺	pit⊦	pįə?∔	pi∖	pit⊦	p <u>i</u> ı?⊺	pi∕

A Reranked Reconstruction System

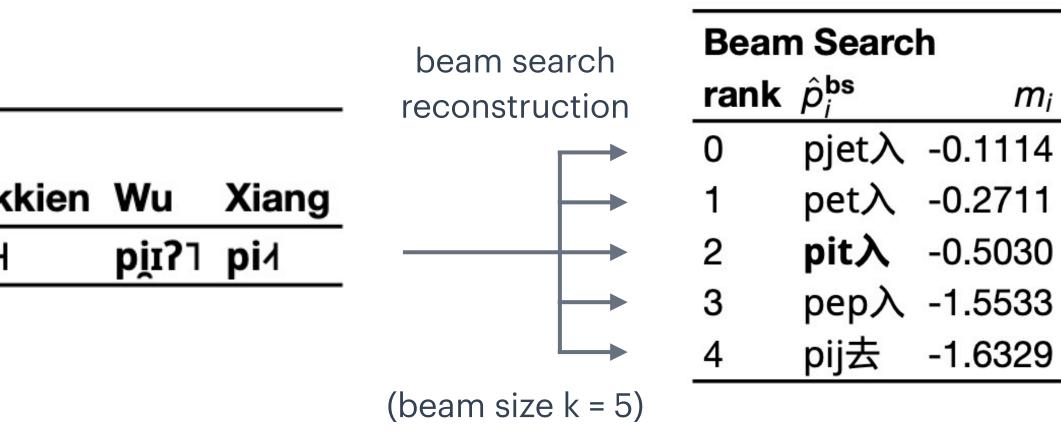
Reflexes in the 必 pit入 'must' cognate set					
Cantonese	Gan	Hakka	Jin	Mandarin	Hokki
piːt1	pit⊺	pit⊦	pįə?∔	pi∖	pit⊦

Bold: correct protoform or reflexe **m**_i: model score (sequence log probability) kien Wu Xiang piĭJJ bi√

A Reranked Reconstruction System

Reflexes in the 必 pit入 'must' cognate set					
Cantonese	Gan	Hakka	Jin	Mandarin	Hokki
piːt1	pit⊺	pit⊦	pįə?∔	pi∖	pit⊦

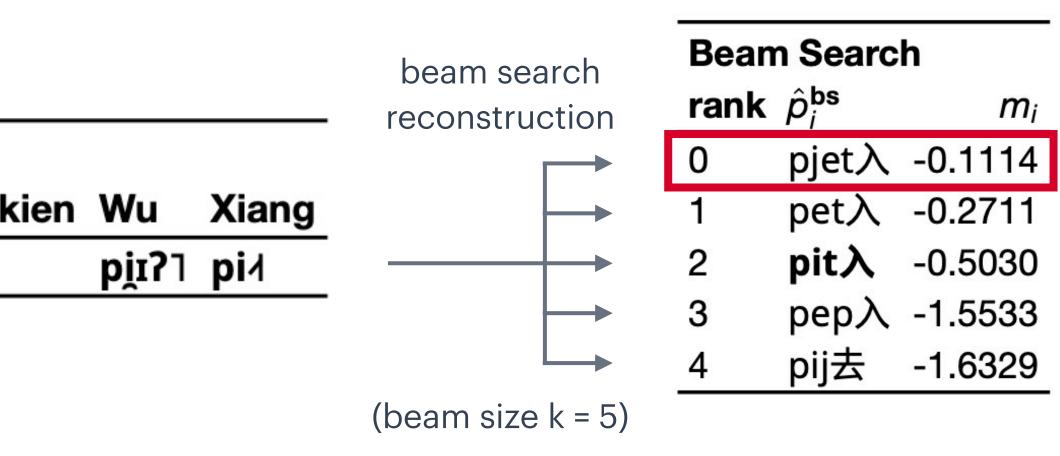
Bold: correct protoform or reflexe **m**_i: model score (sequence log probability)



 m_i

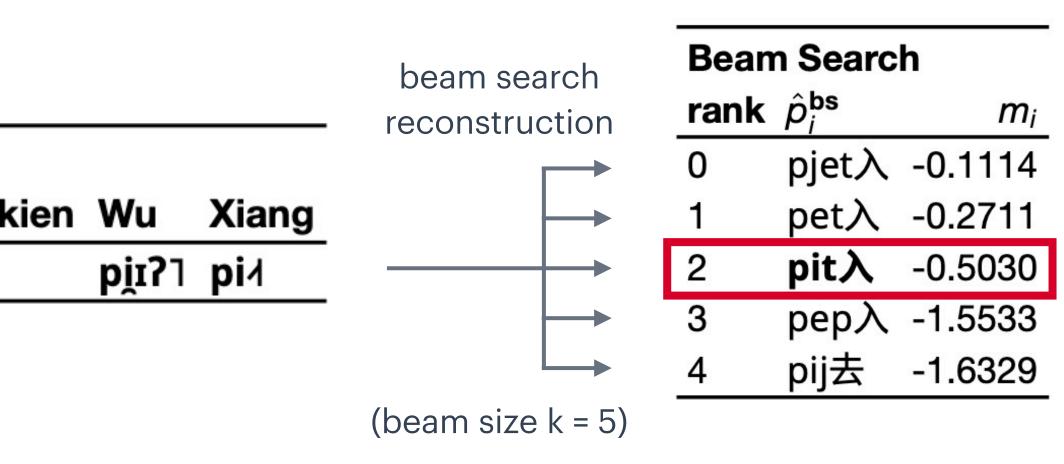
Reflexes in the 必 <i>pit</i> 入 'must' cognate set											
Cantonese	Gan	Hakka	Jin	Mandarin	Hokki						
piːt1	pit⊺	pit⊦	pįə?∔	pi∖	pit⊦						

Bold: correct protoform or reflexe **m**_i: model score (sequence log probability)



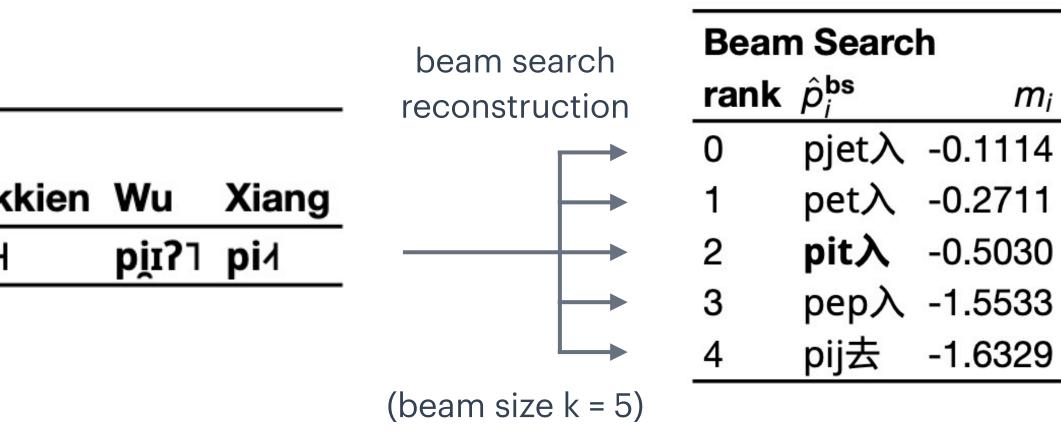
Reflexes in the 必 <i>pit</i> 入 'must' cognate set											
Cantonese	Gan	Hakka	Jin	Mandarin	Hokki						
piːt1	pit⊺	pit⊦	pįə?∔	pi∖	pit⊦						

Bold: correct protoform or reflexe **m**_i: model score (sequence log probability)



Reflexes in the 必 <i>pit</i> 入 'must' cognate set											
Cantonese	Gan	Hakka	Jin	Mandarin	Hokki						
piːt1	pit⊺	pit⊦	pįə?∔	pi∖	pit⊦						

Bold: correct protoform or reflexe **m**_i: model score (sequence log probability)



 m_i

Bear	n Searcl	h	Reflex Prec	liction	ı (based	on pro	toform can	didates)			
rank	$\hat{oldsymbol{p}}_i^{ extbf{bs}}$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	
)	pjet入	-0.1114									
	pet入	-0.2711									
2	pit入	-0.5030									
}	рер入	-1.5533									
1	pij去	-1.6329		_		-	_	_		_	
			piːtl	pit7	pit⊦	pįə?⊣	pi∖	pit-l	piĭ 31	pi∕	

Bean	n Search		reflex	Reflex Pred	liction	(based	on pro	toform car	didates)			
rank	$\hat{\boldsymbol{p}}^{\mathtt{bs}}_i$	m_i	prediction	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入 -	-0.1114		piːt-l	pįɛt⊺	pi̯et⊣	pįə?⊣	pjɛ∖	pi̯ɛt⊦	pjı?⊺	pię≀	
1	pet入 -	-0.2711		piːt-l	pį́εt⊺	pi̯et⊣	pįə?⊣	ρϳε٦	pi̯ɛt⊣	pjı?⊺	pię≀	
2	pit入 ·	-0.5030		petl	pit٦	pit⊦	pįə?⊣	piN	pit⊦	pjı?⊺	pi∕	
3	рер入 -	-1.5533		piːp+	pį́εt⊺	pi̯ap⊣	pįə?⊣	ρϳε٦	ріар⊣	pjı?⊺	pię≀	
4	pij去 -	-1.6329		peí⊦	pi1	рі٦	pi17	piN	pi√	pi1	pi17	
				piːt٦	pit٦	pit↓	pįə?⊣	piN	pit⊦	pjı?⊺	pi∕	-

Bean	n Search		reflex	Reflex	Pred	liction	(based	on pro	toform car	didates)			
rank	$\hat{\boldsymbol{p}}^{bs}_i$	m_i	prediction	Cantor	nese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入 -(0.1114		piːt-l		pįɛt٦	pi̯et↓	pįə?∔	pjɛ∖	pi̯ɛt⊣	pjĭ 31	pję≀	
1	pet入 -(0.2711		piːt-l		pįɛt٦	pi̯et↓	pįə?∔	ρϳε٦	pi̯ɛt⊣	p <u>i</u> ı?⊺	pję≀	
2	pit入 -(0.5030		petl		pit٦	pit⊦	pįə?⊣	pi۱	pit⊦	pjı?⊺	pi∕	
3	рер入 -	1.5533		piːp⊣		pįɛt٦	pi̯ap⊣	pįə?⊣	ρϳε٦	ріар⊣	p <u>i</u> 1?⊺	pję≀	
4	pij去 - ⁻	1.6329		peį́⊦		pi1	pi٦	pi17	pi۱	pi≀	pi1	pi17	
				piːt1		pit٦	pit↓	pįə?∔	pi۱	pit⊦	pjı?⊺	pi∕	-

Bean	n Search		reflex	Reflex Pred	liction	(based	on pro	toform car	didates)			
rank	$\hat{oldsymbol{p}}_i^{ extbf{bs}}$	mi	prediction	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入 -0.	.1114		piːt-l	pįɛt٦	pi̯et↓	pįə?⊣	ρ <u>ί</u> ε∖	pi̯ɛt⊦	pj́ı?⊺	pię≀	
1	pet入 -0.	2711		pi:t+	pįɛt٦	pi̯et⊣	pįə?⊣	pjε1	pi̯ɛt⊣	pj́ı?⊺	piٍę∕	
2	pit入 -0.	5030		petl	pit٦	pit⊦	pįə?⊣	pi۱	pit⊦	pj́ı?⊺	pi∕	
3	pep入 -1.	5533		piːp-l	pįɛt٦	pi̯ap⊣	pįə?⊣	pjε1	рі́ар⊣	p <u>j</u> 1?1	piٍę∕	
4	pij去 -1.	6329		peí⊦	pi1	рі٦	pi17	pi۱	pi√	pi1	pi17	
				piːt٦	pit7	pit⊦	pįə?⊣	pi∖	pit⊦	pjı?⊺	pi∕	

Bean	n Search		reflex	Reflex Pred	liction	(based	on pro	toform car	didates)			
rank	\hat{p}_i^{bs}	m_i	prediction	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入 -(D.1114		pi:t+	pįɛt٦	pi̯et↓	pįə?⊣	ρϳε∖	pi̯ɛt⊦	pj́ı?⊺	piٍę∕	0.2500
1	pet入 -(0.2711		pi:t+	pįɛt٦	pjet↓	pįə?⊣	ρϳε٦	pi̯ɛt⊣	pj́ı?⊺	piٍę∕	0.2500
2	pit入 -(0.5030		petl	pit٦	pit⊦	pįə?⊣	рiN	pit⊦	pj́ı?⊺	pi∕	0.8750
3	рер入 -1	1.5533		piːp-l	pįɛt٦	pi̯ap⊣	pįə?⊣	ρϳε٦	ріар⊣	pj́ı?⊺	piٍę∕	0.2500
4	pij去 -1	1.6329		peil	pi1	pi٦	pi17	piN	pi≀	pi1	pi17	0.1250
				piːt1	pit٦	pit↓	pįə?⊣	рiN	pit⊦	pj́ı?⊺	pi∕	-

Bean	n Search	า	reflex	Reflex Pred	liction	(based	on pro	toform car	didates)			
rank	$\hat{p}_i^{ t bs}$	m_i	prediction	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入	-0.1114		piːt-l	pįεt⊺	pi̯et↓	pįə?∔	pjε∖	pi̯ɛt⊦	pjı?⊺	pię≀	0.2500
1	pet入	-0.2711		piːt-l	pįɛt٦	pi̯et⊣	pįə?⊣	ρϳε٦	pi̯ɛt⊣	pjı?⊺	pię≀	0.2500
2	pit入	-0.5030		petl	pit٦	pit⊦	pįə?∔	pi۱	pit-l	pjı?⊺	pi∕	0.8750
3	рер入	-1.5533		piːp+	pį́εt⊺	pi̯ap↓	pįə?⊣	ρϳε٦	ріар⊣	pjı?⊺	pię≀	0.2500
4	pij去	-1.6329		peí⊦	pi1	рі٦	pi17	piN	pi≀	pi1	pi17	0.1250
				piːt7	pit⊺	pit↓	pįə?⊣	piN	pit⊦	pjı?⊺	pi∕	=

Bean	n Searc	h	Reflex Pred	liction	(based	on pro	toform car	ndidates)			
rank	$\hat{oldsymbol{p}}_i^{oldsymbol{bs}}$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	ri
0	pjet入	-0.1114	piːt-l	pįɛt٦	pi̯et⊣	pįə?∔	ρjε∖	pi̯ɛt⊣	pjɪ?⊺	pję≀	0.2500
1	pet入	-0.2711	pi:t+	pįεt⊺	pi̯et⊣	pįə?∔	pjε ¹	pi̯ɛt⊣	p <u>i</u> ɪ?⊺	pię≀	0.2500
2	pit入	-0.5030	petl	pit٦	pit⊦	pįə?∔	pi۱	pit⊦	p <u>i</u> ɪ?⊺	pi∕	0.8750
3	рер入	-1.5533	piːp-l	pįεt⊺	pjap⊣	pi̯ə?⊣	pjε٦	ріар⊣	p <u>i</u> ɪ?⊺	pię≀	0.2500
4	pij去	-1.6329	peį⊣	pi1	рі٦	pi17	рiN	pi√	pi1	pi17	0.1250
			piːt٦	pit⊺	pit⊦	pįə?∔	pi∖	pit-l	pj₁? 1	pi∕	-

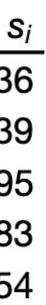
Bold: correct protoform or reflexe
mi: model score (sequence log probability)
ri: reranker score (reflex prediction accuracy)
si: adjusted score (scaled sum of model score and reranker score)

Reranking Resu	t
rank $\hat{p}_i^{\mathbf{rk}}$	5

Si

Bean	n Searc	h	Reflex Pred	liction	(based	on pro	toform car	ndidates)			
rank	$\hat{oldsymbol{p}}_i^{ extbf{bs}}$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i
0	pjet入	-0.1114	pi:t-l	pįɛt٦	pi̯et⊣	pįə?⊣	ρ <u>ί</u> ε∖	pi̯ɛt⊣	pjĭ ?⊺	pię≀	0.2500
1	pet入	-0.2711	pi:t+	pįɛt٦	pi̯et⊣	pįə?⊣	p <u>i</u> ε٦	pi̯ɛt⊣	pịı? ⊺	pię≀	0.2500
2	pit入	-0.5030	petl	pit٦	pit↓	pįə?⊣	pi∖	pit⊦	pịı? ⊺	pi∕	0.8750
3	рер入	-1.5533	pi:p-l	pįεt⊺	pi̯ap⊣	pįə?⊣	pjε٦	ріар⊣	pi̯ɪ? ٦	pię≀	0.2500
4	pij去	-1.6329	peį⊦	pi1	рі٦	pi17	pi∖	pi√	pi1	pi17	0.1250
			piːt٦	pit⊺	pit⊦	pįə?⊣	pi∖	pit⊦	pji ?⊺	pi∕	-

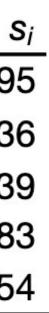
Rera	nking R	esult
rank	\hat{p}_i^{rk}	5
	pjet入	0.203
	pet入	0.043
	pit入	0.599
	рер入	-1.238
	pij去	-1.475



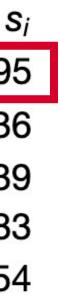
Bean	n Searc	h	Reflex Pred	Reflex Prediction (based on protoform candidates)								
rank	$\hat{oldsymbol{p}}_i^{ extbf{bs}}$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	r _i	
0	pjet入	-0.1114	pi:t-l	pįɛt٦	pi̯et⊣	pįə?⊣	ρ <u>ί</u> ε∖	pi̯ɛt⊣	pjĭ ?⊺	pię≀	0.2500	
1	pet入	-0.2711	pi:t+	pįɛt٦	pi̯et⊣	pįə?⊣	p <u>i</u> ε٦	pi̯ɛt⊣	pịı? ⊺	pię≀	0.2500	
2	pit入	-0.5030	petl	pit٦	pit↓	pįə?⊣	pi∖	pit⊦	pịı? ⊺	pi∕	0.8750	
3	рер入	-1.5533	pi:p-l	pįεt⊺	pi̯ap⊣	pįə?⊣	pjε٦	ріар⊣	pi̯ɪ? ٦	pię≀	0.2500	
4	pij去	-1.6329	peį⊦	pi1	рі٦	pi17	pi∖	pi√	pi1	pi17	0.1250	
			piːt٦	pit⊺	pit⊦	pįə?⊣	pi∖	pit⊦	pji ?⊺	pi∕	-	

Reranki	ng R	esult
rank \hat{p}_i^r	k	:
pi	t入	0.599
pj	et入	0.203
pe	et入	0.043
pe	ep入	-1.238
pi	j去	-1.475

Bear	n Searc	h	Reflex Pred	liction	(based	on pro	toform car	ndidates)			A		Rera	nking F	Result
rank	$\hat{\boldsymbol{p}}^{bs}_i$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	ri	reranking	rank	$\hat{\boldsymbol{p}}_i^{rk}$	Si
0	pjet入	-0.1114	piːt-l	pįɛt٦	pi̯et⊣	pįə?⊣	ρjε∖	pįεt⊦	p <u>i</u> ı?⊺	pię≀	0.2500		0	pit入	0.5995
1	pet入	-0.2711	pi:t-l	pįɛt٦	pi̯et↓	pįə?⊣	p <u>i</u> ε٦	pi̯ɛt⊦	pi̯ɪ? ⊺	pię≀	0.2500		1	pjet入	0.2036
2	pit入	-0.5030	petl	pit٦	pit⊦	pįə?⊣	pi∖	pit⊦	p <u>i</u> ɪ?⊺	pi≀	0.8750		2	pet入	0.0439
3	рер入	-1.5533	piːp-l	pįεt⊺	pi̯ap⊣	pįə?⊣	pjε1	ріар⊣	piĭ 71	pię≀	0.2500		3	рер入	-1.2383
4	pij去	-1.6329	pei	pi1	рі٦	pi17	pi∖	pi√	pi1	pi17	0.1250		4	pij去	-1.4754
			piːt7	pit٦	pit⊦	pįə?⊣	pi∖	pit⊦	piĭ 3⊿	pi∕	-				



Bean	n Searc	h	Reflex Pred	liction	(based	on pro	toform car	ndidates)					Rera	nking F	Result
rank	$\hat{oldsymbol{p}}_i^{oldsymbol{bs}}$	m_i	Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	ri	reranking	rank	$\hat{\boldsymbol{p}}_i^{rk}$	Si
0	pjet入	-0.1114	pi:t-l	pįɛt٦	pi̯et↓	pįə?⊣	ρ <u>ί</u> ε∖	pi̯ɛt⊦	piĭ 3⊥	pię≀	0.2500		0	pit入	0.5995
1	pet入	-0.2711	pi:t-l	pįɛt٦	pi̯et↓	pįə?⊣	pjε1	pi̯ɛt⊣	pịı? ⊺	pię≀	0.2500		1	pjet入	0.2036
2	pit入	-0.5030	petl	pit٦	pit⊦	pįə?⊣	pi∖	pit⊦	pi̯ɪ? ⊺	pi∕	0.8750		2	pet入	0.0439
3	рер入	-1.5533	piːp+	pįɛt٦	pi̯ap⊣	pįə?⊣	pjε٦	рі́ар⊣	pi̯ɪ? ⊺	pįę≀	0.2500	\longrightarrow	3	pep入	-1.2383
4	pij去	-1.6329	peil	pi1	рі٦	pi17	pi∖	pi√	pi1	pi17	0.1250		4	pij去	-1.4754
			piːt٦	pit⊺	pit⊦	pįə?⊣	pi∖	pit⊦	pjĭ 31	pi≀	-				



Methods

The Reranked Reconstruction Algorithm

Algorithm 1 Sequential representation of our reranked reconstruction algorithm **Require:** f_{θ_f} = a beam search-enabled reconstruction model with pre-trained parameters θ_f **Require:** $g_{\theta_a} = a$ reflex prediction model with pre-trained parameters θ_g **Require:** k = beam size for predicting candidate reconstructions on f_{θ_f} **Require:** a = length normalization constant **Require:** λ = score adjustment weight

$$C = [(\hat{p}_1, m_1), (\hat{p}_2, m_2), \dots]$$

$$C' \leftarrow []$$

for (\hat{p}_i, m_i) in C do
 $a \leftarrow 0$
for $j \leftarrow 1$ to n do
 $\hat{p}'_i \leftarrow D_j \hat{p}_i$
 $\hat{d}_{ij} \leftarrow g_{\theta_g}(\hat{p}'_i) \triangleright$
if $\hat{d}_{ij} = d_j$ then
 $a \leftarrow a + 1$
 $r_i \leftarrow a/n$
 $s_i \leftarrow m_i + \lambda r_i$
 $C' \leftarrow C' + [(\hat{p}_i, s_i)]$
 $C' \leftarrow C'$ sorted by descent
return $C'[0]$

Require: $d_1, d_2, ..., d_n$ = reflexes in daughter languages $D_1, D_2, ..., D_n$ from a cognate set with *n* reflexes

 $D \leftarrow "*"D_1":"d_1"*"D_2":"d_2"*"\cdots "*"D_n":"d_n"*"$ concatenate reflex sequences into a long sequence, with language labels and separators in between

> $(\hat{p}_l, m_l)] \leftarrow f_{\theta_f}(D, k, a) > \text{beam search with beam size } k \text{ to obtain a list of } k$ $I \leq k$ candidate protoform predictions \hat{p}_i with their normalized log probabilities $m_i = \frac{\log P(\hat{p}_i|D)}{|\hat{p}_i|^a}$ assigned by f_{θ_f} for $1 \le i \le I$

> > initialize reranked candidate list

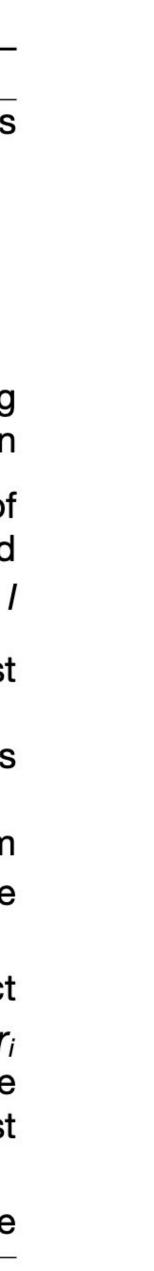
counter for the number of correctly derived daughters

prepend the *j*-th daughter language token to the candidate protoform predict the reflex in the *j*-th daughter language based on the *i*-th candidate

> increment counter if predicted reflex is correct \triangleright use the accuracy of reflex predictions as the reranker score r_i \triangleright calculate the adjusted score s_i for the *i*-th candidate > append entry with adjusted score to reranked candidate list

nding s_i

return the candidate with the highest adjusted score



Datasets

Romance Datasets

- Rom-phon (Meloni et al., 2021; Ciobanu and Dinu, 2018) IPA representation
- **Rom-orth** (Meloni et al., 2021; Ciobanu and Dinu, 2018) Orthographic representation

Sinitic Datasets

- WikiHan (Chang et al., 2022)
- **Hóu** (Hóu, 2004)

Dataset

WikiHan (Chang et al., 2022) WikiHan-aug (Cui et al., 2022) Hóu (Hóu, 2004) Rom-phon (Meloni et al., 2021; Ciobanu and Dinu, Rom-orth (Meloni et al., 2021; Ciobanu and Dinu, 2

WikiHan-aug (Cui et al., 2022) — WikiHan augmented with cognate prediction (Kirov et al., 2022)

	Cognate sets	# varieties	Ancestor language
	5,165	8	Middle Chinese
	8,780	8	Middle Chinese
	804	39	Middle Chinese
, 2018)	8,703	5	Latin
2018)	8,631	5	Latin

Models

Reconstruction models (sequence-to-sequence baselines)

- Meloni et al. (2021)'s GRU (GRU)
- Kim et al. (2023)'s Transformer (Trans)

Reconstruction model with beam search

GRU model, and a multi-layer perceptron classifier)

Reflex Prediction models

- Arora et al. (2023)'s Transformer reflex prediction model
- Kim et al. (2023)'s Transformer reconstruction model adapted for reflex prediction
- Arora et al. (2023)'s GRU reflex prediction model
- and target-language-specific connections in the decoder's classifier network

• **GRU-BS** with support for beam search decoding on the same architecture as Meloni et al. (2021)'s GRU (consisting of language and token embeddings, a single-layer unidirectional encoder-decoder

Baseline GRU based on Meloni et al. (2021)'s reconstruction GRU, with multi-layer bidirectional

encoding, target language embedding during decode, one-hot vector target language prompting,

Evaluation Metrics

- Accuracy (ACC): The percentage of exactly correct reconstructions
- Token edit distance (TED): The number of token insertions, deletions, or substitutions between predictions and targets (Levenshtein et al., 1966)
- Token error rate (TER): A length-normalized token edit distance (Cui et al., 2022)
- Feature error rate (FER): A length-normalized measure of phonological edit distance by PanPhon (Mortensen et al., 2016)
- B-Cubed F Score (BCFS): A measure of structural similarity between predictions and targets (Amigó et al., 2009; List, 2019)

7

Wilcoxon Rank-Sum test (Wilcoxon, 1992) with α = 0.01 Bootstrap test (Efron and Tibshirani, 1994) with 99% confidence interval (CI) for

difference in mean

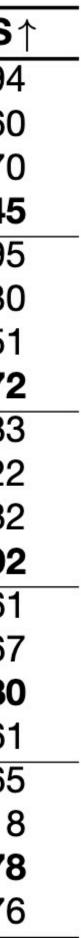
Results and Analysis

Results: Reflex Prediction

Bold: the best-performing model for each metric

Dataset	Model	ACC% ↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (baseline)	66.43%	0.5244	0.1547	0.0400	0.7394
	GRU (Arora et al., 2023)	64.45%	0.5558	0.1640	0.0428	0.7260
	Transformer (Kim et al., 2023)	66.39%	0.5302	0.1564	0.0406	0.7370
	Transformer (Arora et al., 2023)	67.64%	0.5128	0.1513	0.0390	0.7445
WikiHan-aug	GRU (baseline)	68.11%	0.5007	0.1477	0.0380	0.7495
	GRU (Arora et al., 2023)	66.94%	0.5159	0.1522	0.0391	0.7430
	Transformer (Kim et al., 2023)	68.96%	0.4889	0.1442	0.0371	0.7551
	Transformer (Arora et al., 2023)	69.37%	0.4826	0.1424	0.0363	0.7572
Hóu	GRU (baseline)	51.72%	0.7777	0.2037	0.0488	0.6783
	GRU (Arora et al., 2023)	49.26%	0.8266	0.2166	0.0528	0.6622
	Transformer (Kim et al., 2023)	55.46%	0.7576	0.1985	0.0494	0.6882
	Transformer (Arora et al., 2023)	55.60%	0.7520	0.1970	0.0485	0.6892
Rom-phon	GRU (baseline)	63.85%	0.7439	0.1014	0.0426	0.8361
	GRU (Arora et al., 2023)	48.28%	1.3257	0.1808	0.0930	0.7567
	Transformer (Kim et al., 2023)	64.19%	0.7349	0.1002	0.0427	0.8380
	Transformer (Arora et al., 2023)	63.96%	0.7442	0.1015	0.0428	0.8361
Rom-orth	GRU (baseline)	64.58%	0.7301	0.0967	-	0.8465
	GRU (Arora et al., 2023)	57.92%	0.8741	0.1158		0.8218
	Transformer (Kim et al., 2023)	64.80%	0.7258	0.0961	-	0.8478
	Transformer (Arora et al., 2023)	65.20%	0.7247	0.0960	-	0.8476

Average reflex prediction performance across 20 runs.



Results: **Reflex Prediction**

Bold: the best-performing model for each metric

We proceed by choosing the best model for each architecture as a reranker model (highlighted).

Dataset	Model	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (baseline)	66.43%	0.5244	0.1547	0.0400	0.7394
	GRU (Arora et al., 2023)	64.45%	0.5558	0.1640	0.0428	0.7260
	Transformer (Kim et al., 2023)	66.39%	0.5302	0.1564	0.0406	0.7370
	Transformer (Arora et al., 2023)	67.64%	0.5128	0.1513	0.0390	0.7445
WikiHan-aug	GRU (baseline)	68.11%	0.5007	0.1477	0.0380	0.7495
	GRU (Arora et al., 2023)	66.94%	0.5159	0.1522	0.0391	0.7430
	Transformer (Kim et al., 2023)	68.96%	0.4889	0.1442	0.0371	0.7551
	Transformer (Arora et al., 2023)	69.37%	0.4826	0.1424	0.0363	0.7572
Hóu	GRU (baseline)	51.72%	0.7777	0.2037	0.0488	0.6783
	GRU (Arora et al., 2023)	49.26%	0.8266	0.2166	0.0528	0.6622
	Transformer (Kim et al., 2023)	55.46%	0.7576	0.1985	0.0494	0.6882
	Transformer (Arora et al., 2023)	55.60%	0.7520	0.1970	0.0485	0.6892
Rom-phon	GRU (baseline)	63.85%	0.7439	0.1014	0.0426	0.8361
	GRU (Arora et al., 2023)	48.28%	1.3257	0.1808	0.0930	0.7567
	Transformer (Kim et al., 2023)	64.19%	0.7349	0.1002	0.0427	0.8380
	Transformer (Arora et al., 2023)	63.96%	0.7442	0.1015	0.0428	0.8361
Rom-orth	GRU (baseline)	64.58%	0.7301	0.0967	-	0.8465
	GRU (Arora et al., 2023)	57.92%	0.8741	0.1158	2 - 1	0.8218
	Transformer (Kim et al., 2023)	64.80%	0.7258	0.0961	-	0.8478
	Transformer (Arora et al., 2023)	65.20%	0.7247	0.0960	-	0.8476

Average reflex prediction performance across 20 runs.

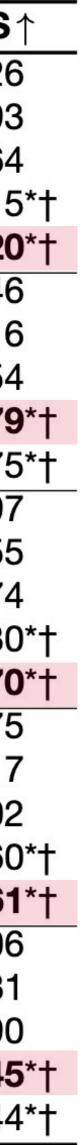
Bold: the best-performing model for each metric Asterisk: statistically better performance than both baseline models (Meloni et al. (2021)'s GRU and Kim et al. (2023)'s Transformer) Dagger: reranking system performs statistically better than its beam search counterpart

Dataset	Reconstruction System	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (Meloni et al., 2021)	55.58%	0.7360	0.1724	0.0686	0.7426
	Trans (Kim et al., 2023)	54.62%	0.7453	0.1746	0.0696	0.7393
	GRU-BS (<i>k</i> = 10)	54.88%	0.7507	0.1758	0.0701	0.7364
	GRU-BS ($k \le 10$) + GRU Reranker	57.14%*†	0.7045*†	0.1650*†	0.0661*†	0.7515
	GRU-BS ($k \le 10$) + Trans. Reranker	57.26% *†	0.7029 *†	0.1646 *†	0.0658*†	0.7520
WikiHan-aug	GRU (Meloni et al., 2021)	54.73%	0.7574	0.1774	0.0689	0.7346
	Trans (Kim et al., 2023)	55.82%	0.7317	0.1714	0.0661	0.7416
	GRU-BS (<i>k</i> = 10)	56.64%*	0.7214	0.1690	0.0658	0.7454
	GRU-BS ($k \le 10$) + GRU Reranker	58.58% *†	0.6822 *†	0.1598 *†	0.0628*†	0.7579
	GRU-BS ($k \le 10$) + Trans. Reranker	58.58%*†	0.6840*†	0.1602*†	0.0626*†	0.7575
Hóu	GRU (Meloni et al., 2021)	34.63%	1.0916	0.2479	0.0914	0.6697
	Trans (Kim et al., 2023)	39.01%	0.9904	0.2233	0.0875	0.6955
	GRU-BS (<i>k</i> = 10)	37.36%	1.0382	0.2328	0.0917	0.6974
	GRU-BS ($k \le 10$) + GRU Reranker	40.50%†	0.9727†	0.2181†	0.0867†	0.7130
	GRU-BS ($k \le 10$) + Trans. Reranker	42.08% *†	0.9503*†	0.2131 *†	0.0850†	0.7170
Rom-phon	GRU (Meloni et al., 2021)	51.92%	0.9775	0.1244	0.0390	0.8275
	Trans (Kim et al., 2023)	53.04%	0.9050	0.1148	0.0377	0.8417
	GRU-BS (<i>k</i> = 10)	52.63%	0.9125	0.1018*	0.0353*	0.8402
	GRU-BS ($k \le 10$) + GRU Reranker	53.95% *†	0.8775*†	0.0979*†	0.0336*†	0.8460
	GRU-BS ($k \le 10$) + Trans. Reranker	53.85%*†	0.8765 *†	0.0978 *†	0.0333*†	0.8461
Rom-orth	GRU (Meloni et al., 2021)	69.41%	0.6004	0.0781	-	0.8906
	Trans (Kim et al., 2023)	71.05%	0.5636	0.0734	-	0.8981
	GRU-BS (<i>k</i> = 10)	71.09%	0.5531	0.0617*	-	0.8990
	GRU-BS ($k \le 10$) + GRU Reranker	72.60% *†	0.5237 *†	0.0584 *†	-	0.9045
	GRU-BS ($k \le 10$) + Trans. Reranker	72.50%*†	0.5246*†	0.0585*†	-	0.9044

Bold: the best-performing model for each metric Asterisk: significantly better performance than both baseline models (Meloni et al. (2021)'s GRU and Kim et al. (2023)'s Transformer) Dagger: reranking system performs significantly better than its beam search counterpart

Our reranking system performs the best on all datasets (highlighted).

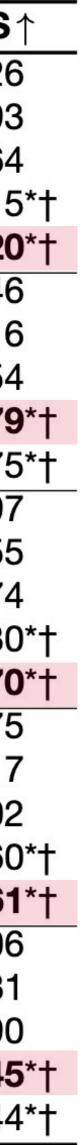
Dataset	Reconstruction System	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (Meloni et al., 2021)	55.58%	0.7360	0.1724	0.0686	0.7426
	Trans (Kim et al., 2023)	54.62%	0.7453	0.1746	0.0696	0.7393
	GRU-BS (<i>k</i> = 10)	54.88%	0.7507	0.1758	0.0701	0.7364
	GRU-BS ($k \le 10$) + GRU Reranker	57.14%*†	0.7045*†	0.1650*†	0.0661*†	0.7515
	GRU-BS ($k \le 10$) + Trans. Reranker	57.26% *†	0.7029*†	0.1646*†	0.0658*†	0.7520
WikiHan-aug	GRU (Meloni et al., 2021)	54.73%	0.7574	0.1774	0.0689	0.7346
	Trans (Kim et al., 2023)	55.82%	0.7317	0.1714	0.0661	0.7416
	GRU-BS (<i>k</i> = 10)	56.64%*	0.7214	0.1690	0.0658	0.7454
	GRU-BS ($k \le 10$) + GRU Reranker	58.58% *†	0.6822*†	0.1598*†	0.0628*†	0.7579
	GRU-BS ($k \le 10$) + Trans. Reranker	58.58%*†	0.6840*†	0.1602*†	0.0626*†	0.7575
Hóu	GRU (Meloni et al., 2021)	34.63%	1.0916	0.2479	0.0914	0.6697
	Trans (Kim et al., 2023)	39.01%	0.9904	0.2233	0.0875	0.6955
	GRU-BS (<i>k</i> = 10)	37.36%	1.0382	0.2328	0.0917	0.6974
	GRU-BS ($k \le 10$) + GRU Reranker	40.50%†	0.9727†	0.2181†	0.0867†	0.7130
	GRU-BS ($k \le 10$) + Trans. Reranker	42.08% *†	0.9503*†	0.2131*†	0.0850†	0.7170
Rom-phon	GRU (Meloni et al., 2021)	51.92%	0.9775	0.1244	0.0390	0.8275
	Trans (Kim et al., 2023)	53.04%	0.9050	0.1148	0.0377	0.8417
	GRU-BS (<i>k</i> = 10)	52.63%	0.9125	0.1018*	0.0353*	0.8402
	GRU-BS ($k \le 10$) + GRU Reranker	53.95% *†	0.8775*†	0.0979*†	0.0336*†	0.8460
	GRU-BS ($k \le 10$) + Trans. Reranker	53.85%*†	0.8765*†	0.0978*†	0.0333*†	0.8461
Rom-orth	GRU (Meloni et al., 2021)	69.41%	0.6004	0.0781	-	0.8906
	Trans (Kim et al., 2023)	71.05%	0.5636	0.0734	-	0.8981
	GRU-BS ($k = 10$)	71.09%	0.5531	0.0617*	-	0.8990
	GRU-BS ($k \le 10$) + GRU Reranker	72.60%*†	0.5237*†	0.0584*†	-	0.9045
	GRU-BS $(k \le 10)$ + Trans. Reranker	72.50%*†	0.5246*†	0.0585*†	-	0.9044



Bold: the best-performing model for each metric Asterisk: significantly better performance than both baseline models (Meloni et al. (2021)'s GRU and Kim et al. (2023)'s Transformer) Dagger: reranking system performs significantly better than its beam search counterpart

Our reranking system performs the best on all datasets (highlighted).

Dataset	Reconstruction System	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (Meloni et al., 2021)	55.58%	0.7360	0.1724	0.0686	0.7426
	Trans (Kim et al., 2023)	54.62%	0.7453	0.1746	0.0696	0.7393
	GRU-BS (<i>k</i> = 10)	54.88%	0.7507	0.1758	0.0701	0.7364
	GRU-BS ($k \le 10$) + GRU Reranker	57.14%*†	0.7045*†	0.1650*†	0.0661*†	0.7515
	GRU-BS ($k \le 10$) + Trans. Reranker	57.26%*†	0.7029 *†	0.1646 *†	0.0658*†	0.7520
WikiHan-aug	GRU (Meloni et al., 2021)	54.73%	0.7574	0.1774	0.0689	0.7346
	Trans (Kim et al., 2023)	55.82%	0.7317	0.1714	0.0661	0.7416
	GRU-BS (<i>k</i> = 10)	56.64%*	0.7214	0.1690	0.0658	0.7454
	GRU-BS ($k \le 10$) + GRU Reranker	58.58% *†	0.6822*†	0.1598*†	0.0628*†	0.7579
	GRU-BS ($k \le 10$) + Trans. Reranker	58.58%*†	0.6840*†	0.1602*†	0.0626*†	0.7575
Hóu	GRU (Meloni et al., 2021)	34.63%	1.0916	0.2479	0.0914	0.6697
	Trans (Kim et al., 2023)	39.01%	0.9904	0.2233	0.0875	0.6955
	GRU-BS (<i>k</i> = 10)	37.36%	1.0382	0.2328	0.0917	0.6974
	GRU-BS ($k \le 10$) + GRU Reranker	40.50%†	0.9727†	0.2181†	0.0867†	0.7130
	GRU-BS ($k \le 10$) + Trans. Reranker	42.08% *†	0.9503*†	0.2131*†	0.0850†	0.7170
Rom-phon	GRU (Meloni et al., 2021)	51.92%	0.9775	0.1244	0.0390	0.8275
	Trans (Kim et al., 2023)	53.04%	0.9050	0.1148	0.0377	0.8417
	GRU-BS (<i>k</i> = 10)	52.63%	0.9125	0.1018*	0.0353*	0.8402
	GRU-BS ($k \le 10$) + GRU Reranker	53.95% *†	0.8775*†	0.0979*†	0.0336*†	0.8460
	GRU-BS ($k \le 10$) + Trans. Reranker	53.85%*†	0.8765*†	0.0978*†	0.0333*†	0.8461
Rom-orth	GRU (Meloni et al., 2021)	69.41%	0.6004	0.0781	-	0.8906
	Trans (Kim et al., 2023)	71.05%	0.5636	0.0734	-	0.8981
	GRU-BS (<i>k</i> = 10)	71.09%	0.5531	0.0617*	-	0.8990
	GRU-BS ($k \le 10$) + GRU Reranker	72.60% *†	0.5237 *†	0.0584*†	-	0.9045
	GRU-BS ($k \le 10$) + Trans. Reranker	72.50%*†	0.5246*†	0.0585*†	-	0.9044



Bold: the best-performing model for each metric
Asterisk: significantly better performance than both baseline models
(Meloni et al. (2021)'s GRU and Kim et al. (2023)'s Transformer)
Dagger: reranking system performs significantly better than its beam search counterpart

GRU-BS with reranking performs significantly better on 4 out of the 5 datasets (highlighted).

Dataset	Reconstruction System	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (Meloni et al., 2021)	55.58%	0.7360	0.1724	0.0686	0.7426
	Trans (Kim et al., 2023)	54.62%	0.7453	0.1746	0.0696	0.7393
	GRU-BS (<i>k</i> = 10)	54.88%	0.7507	0.1758	0.0701	0.7364
	GRU-BS ($k \le 10$) + GRU Reranker	57.14%*†	0.7045*†	0.1650*†	0.0661*†	0.7515
	GRU-BS ($k \le 10$) + Trans. Reranker	57.26% *†	0.7029 *†	0.1646 *†	0.0658*†	0.7520
WikiHan-aug	GRU (Meloni et al., 2021)	54.73%	0.7574	0.1774	0.0689	0.7346
	Trans (Kim et al., 2023)	55.82%	0.7317	0.1714	0.0661	0.7416
	GRU-BS (<i>k</i> = 10)	56.64%*	0.7214	0.1690	0.0658	0.7454
	GRU-BS ($k \le 10$) + GRU Reranker	58.58% *†	0.6822*†	0.1598*†	0.0628*†	0.7579
	GRU-BS ($k \le 10$) + Trans. Reranker	58.58%*†	0.6840*†	0.1602*†	0.0626*†	0.7575
Hóu	GRU (Meloni et al., 2021)	34.63%	1.0916	0.2479	0.0914	0.6697
	Trans (Kim et al., 2023)	39.01%	0.9904	0.2233	0.0875	0.6955
	GRU-BS (<i>k</i> = 10)	37.36%	1.0382	0.2328	0.0917	0.6974
	GRU-BS ($k \le 10$) + GRU Reranker	40.50%†	0.9727†	0.2181†	0.0867†	0.7130
	GRU-BS ($k \le 10$) + Trans. Reranker	42.08% *†	0.9503*†	0.2131 *†	0.0850†	0.7170
Rom-phon	GRU (Meloni et al., 2021)	51.92%	0.9775	0.1244	0.0390	0.8275
	Trans (Kim et al., 2023)	53.04%	0.9050	0.1148	0.0377	0.8417
	GRU-BS (<i>k</i> = 10)	52.63%	0.9125	0.1018*	0.0353*	0.8402
	GRU-BS ($k \le 10$) + GRU Reranker	53.95% *†	0.8775*†	0.0979*†	0.0336*†	0.8460
	GRU-BS ($k \le 10$) + Trans. Reranker	53.85%*†	0.8765*†	0.0978*†	0.0333*†	0.8461
Rom-orth	GRU (Meloni et al., 2021)	69.41%	0.6004	0.0781	-	0.8906
	Trans (Kim et al., 2023)	71.05%	0.5636	0.0734	-	0.8981
	GRU-BS (<i>k</i> = 10)	71.09%	0.5531	0.0617*	-	0.8990
	GRU-BS ($k \le 10$) + GRU Reranker	72.60%*†	0.5237*†	0.0584*†	-	0.9045
	GRU-BS ($k \le 10$) + Trans. Reranker	72.50%*†	0.5246*†	0.0585*†	-	0.9044

Bold: the best-performing model for each metric
Asterisk: significantly better performance than both baseline models
(Meloni et al. (2021)'s GRU and Kim et al. (2023)'s
Transformer)
Dagger: reranking system performs significantly better than its beam search counterpart

Ablation:

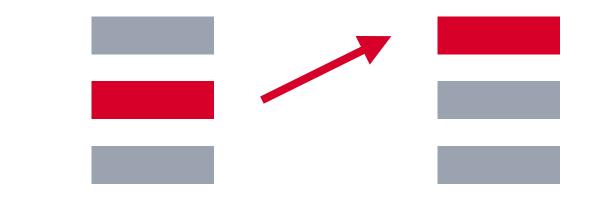
GRU-BS with reranking performs significantly better than GRU-BS without reranking on all 5 datasets (highlighted).

Dataset	Reconstruction System	ACC%↑	TED↓	TER↓	FER↓	BCFS
WikiHan	GRU (Meloni et al., 2021)	55.58%	0.7360	0.1724	0.0686	0.7426
	Trans (Kim et al., 2023)	54.62%	0.7453	0.1746	0.0696	0.7393
	GRU-BS (<i>k</i> = 10)	54.88%	0.7507	0.1758	0.0701	0.7364
	GRU-BS ($k \le 10$) + GRU Reranker	57.14%*†	0.7045*†	0.1650*†	0.0661*†	0.7515
	GRU-BS ($k \le 10$) + Trans. Reranker	57.26% *†	0.7029 *†	0.1646 *†	0.0658 *†	0.7520
WikiHan-aug	GRU (Meloni et al., 2021)	54.73%	0.7574	0.1774	0.0689	0.7346
	Trans (Kim et al., 2023)	55.82%	0.7317	0.1714	0.0661	0.7416
	GRU-BS (<i>k</i> = 10)	56.64%*	0.7214	0.1690	0.0658	0.7454
	GRU-BS ($k \le 10$) + GRU Reranker	58.58% *†	0.6822*†	0.1598 *†	0.0628*†	0.7579
	GRU-BS ($k \le 10$) + Trans. Reranker	58.58%*†	0.6840*†	0.1602*†	0.0626 *†	0.7575
Hóu	GRU (Meloni et al., 2021)	34.63%	1.0916	0.2479	0.0914	0.6697
	Trans (Kim et al., 2023)	39.01%	0.9904	0.2233	0.0875	0.6955
	GRU-BS (<i>k</i> = 10)	37.36%	1.0382	0.2328	0.0917	0.6974
	GRU-BS ($k \le 10$) + GRU Reranker	40.50%†	0.9727†	0.2181†	0.0867†	0.7130
	GRU-BS ($k \le 10$) + Trans. Reranker	42.08% *†	0.9503*†	0.2131*†	0.0850 †	0.7170
Rom-phon	GRU (Meloni et al., 2021)	51.92%	0.9775	0.1244	0.0390	0.8275
	Trans (Kim et al., 2023)	53.04%	0.9050	0.1148	0.0377	0.8417
	GRU-BS (<i>k</i> = 10)	52.63%	0.9125	0.1018*	0.0353*	0.8402
	GRU-BS ($k \le 10$) + GRU Reranker	53.95% *†	0.8775*†	0.0979*†	0.0336*†	0.8460
	GRU-BS ($k \le 10$) + Trans. Reranker	53.85%*†	0.8765*†	0.0978 *†	0.0333*†	0.8461
Rom-orth	GRU (Meloni et al., 2021)	69.41%	0.6004	0.0781	-	0.8906
	Trans (Kim et al., 2023)	71.05%	0.5636	0.0734	-	0.8981
	GRU-BS (<i>k</i> = 10)	71.09%	0.5531	0.0617*	-	0.8990
	GRU-BS ($k \le 10$) + GRU Reranker	72.60% *†	0.5237*†	0.0584 *†	-	0.9045
	GRU-BS ($k \le 10$) + Trans. Reranker	72.50%*†	0.5246*†	0.0585*†	-	0.9044

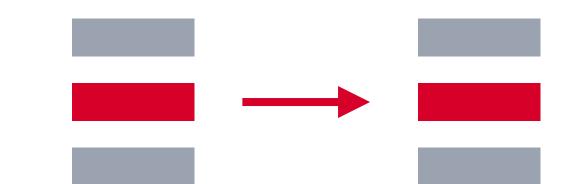
Reranker Behavior Categories



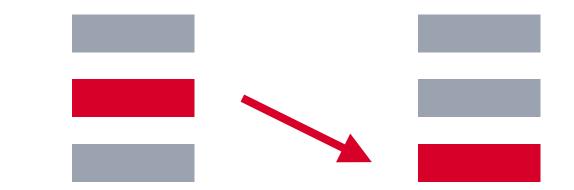
Not-in: the target protoform is not part of the beam search result



Improved: reranker assigns better ranking to the target protoform



Unchanged: reranker does not change ranking of the target protoform



Worsened: reranker assigns worse ranking to the target protoform

incorrect protoform

Dataset	Improved	Worsened	Unchanged	Not-in	Total	Improved/Changed (%)
WikiHan	84 (8.13%)	32 (3.10%)	755 (73.09%)	162 (15.68%)	1033	72.41%
WikiHan-aug	88 (8.52%)	23 (2.23%)	791 (76.57%)	131 (12.68%)	1033	79.28%
Hóu	26 (16.15%)	15 (9.32%)	88 (54.66%)	32 (19.88%)	161	63.41%
Rom-phon	109 (6.21%)	61 (3.48%)	1198 (68.30%)	386 (22.01%)	1754	64.12%
Rom-orth	75 (4.29%)	23 (1.32%)	1367 (78.16%)	284 (16.24%)	1749	76.53%

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking improvement among instances with changed (i.e. improved or worsened) ranking (right).

Dataset	Improved	Worsened	Unchanged	Not-in	Total	Improved/Changed (%)
WikiHan	84 (8.13%)	32 (3.10%)	755 (73.09%)	162 (15.68%)	1033	72.41%
WikiHan-aug	88 (8.52%)	23 (2.23%)	791 (76.57%)	131 (12.68%)	1033	79.28%
Hóu	26 (16.15%)	15 (9.32%)	88 (54.66%)	32 (19.88%)	161	63.41%
Rom-phon	109 (6.21%)	61 (3.48%)	1198 (68.30%)	386 (22.01%)	1754	64.12%
Rom-orth	75 (4.29%)	23 (1.32%)	1367 (78.16%)	284 (16.24%)	1749	76.53%

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking improvement among instances with changed (i.e. improved or worsened) ranking (right).

Dataset	Improved	Worsened	Unchanged	Not-in	Total	Improved/Changed (%)
WikiHan	84 (8.13%)	32 (3.10%)	755 (73.09%)	162 (15.68%)	1033	72.41%
WikiHan-aug	88 (8.52%)	23 (2.23%)	791 (76.57%)	131 (12.68%)	1033	79.28%
Hóu	26 (16.15%)	15 (9.32%)	88 (54.66%)	32 (19.88%)	161	63.41%
Rom-phon	109 (6.21%)	61 (3.48%)	1198 (68.30%)	386 (22.01%)	1754	64.12%
Rom-orth	75 (4.29%)	23 (1.32%)	1367 (78.16%)	284 (16.24%)	1749	76.53%

The distribution of reranker behavior categorization on the test set (left), and the corresponding rate of ranking improvement among instances with changed (i.e. improved or worsened) ranking (right).

Errors and Phonetic Distances

		D _T : normalized token edit distance	D _F : normalized feature edit distance
Dataset	Category	$D_T(\hat{p}, R) < D_T(p, R)$	$D_F(\hat{p},R) < D_F(p,R)$
		(<i>R</i> more similar to \hat{p} than p by D_T)	(<i>R</i> more similar to \hat{p} than p by D_F)
WikiHan	Worsened	37.50%	53.12%
	Unchanged	35.56%	43.33%
	Improved	28.30%	32.08%
Rom-phon	Worsened	60.66 %	62.30 %
	Unchanged	47.21%	51.48%
	Improved	47.17%	49.06%

R: reflexes **p**: predicted protoform p: target protoform

Comparison between the phonetic similarity between the reflexes R and the predicted protoform \hat{p} versus the target protoform p for each category of the reranker's behavior among reconstruction errors

Errors and Phonetic Distances

		D _T : normalized token edit distance	D _F : normalized feature edit distance
Dataset	Category	$D_T(\hat{p}, R) < D_T(p, R)$	$D_F(\hat{p},R) < D_F(p,R)$
		(<i>R</i> more similar to \hat{p} than p by D_T)	(<i>R</i> more similar to \hat{p} than p by D_F)
WikiHan	Worsened	37.50%	53.12%
	Unchanged	35.56%	43.33%
	Improved	28.30%	32.08%
Rom-phon	Worsened	60.66 %	62.30 %
	Unchanged	47.21%	51.48%
	Improved	47.17%	49.06%

R: reflexes **p**: predicted protoform p: target protoform

Comparison between the phonetic similarity between the reflexes R and the predicted protoform \hat{p} versus the target protoform p for each category of the reranker's behavior among reconstruction errors

	Category	Worsene	d	Unchanged		Improved	
Dataset		Proto	Prôto	Proto	Prôto	Proto	Prôto
WikiHan	Middle Chinese	mjuk™	muk ^w	tʰ ja ŋ	t͡ɕʰa ŋ	ts⁺je k	ts e k
	Cantonese	m_ <mark>បk</mark>	mʊk	fs ^h _ <code>ɔːŋ</code>	fs ^h ɔːŋ	fs _ı k	fs I k
	Hakka	m_uk	muk			fs _a k	fs a k
	Mandarin	m_u_	mu	<mark>fşʰ</mark> aŋ	tsha ŋ	fehli u	fehi _
	Hokkien	b_ok	bok	fe ^h _ion	fe ⁿ ion	<mark>€iah_iak</mark>	fe ^h iək
Rom-phon	Latin	ast ^h ma	as_ma	f_ɛrɪtatɛm	f_εritam	teksere	tɪsserε
	Romanian	ast mə	as <mark>t</mark> mə			tsese	tuusese
	French	as_ m_	asumu	fjɛʁuteuuu	fjɛʁ_te_	ti_se	t <mark>i</mark> _se
	Italian	az_ ma	az∟ma	f_ <mark>eri</mark> ta	f_erita_	tɛssere	t <mark>e</mark> ssere
	Spanish	as_ ma	as_ma			tex_er_	t <mark>ex</mark> lerl
	Portuguese	az. me	a <mark>z</mark> _me			ti_ser_	ti_ser_
			Color I	key: 🔳 substitu	ution	ertion	(_) deletion

	睦 mjuk ^w '	friendly'				
	Proto	Prôto	Proto: target p	rotoform		
	mjuk™	muk™	Prôto: predicte	ed protoform		
	m_ <mark>ʊk</mark> m_uk	mʊk muk				
	m_u_ b_ɔk	mu bok				
	ast ^h ma	as_ma				

Color key: substitutioninsertion

(_) deletion

e

e

		昶 <i>tʰjɑŋ</i> 'long	daytime'	磧 <i>tsʰjek</i> 'gravel'	
		Proto	Prôto	Proto	Prôto
		t ^ʰ ja ŋ	fɕʰa ŋ	fs⁺je k	ts e k
		fsh_ɔːŋ	fs ^h ɔːŋ	ts _r k	ts Ik ts ak
		tshlan tshlion	<mark>fs</mark> han fɕhiɔŋ	tenli tenliek	teri teri
		f_critatem	f_critam	teksere	tissere

	asthma 'a	asthma'	feritatem '	ferocity'	
	Proto	Prôto	Proto	Prôto	
	ast ^h ma	as_ma	f_critatem	f_ɛritam	
	ast mə	as <mark>t</mark> mə			
	as_ m_	as∟m∟	fjɛʁ_te	fjɛʁ_te_	
	az_ ma	az∟ma	f_erita	f_erita_	
	as_ ma	as∟ma			
	az. me	az_me			

Color key:
Substitution

insertion

(_) deletion

e

e

Dataset	Improved	Worsened	Unchanged	Not-in	Total	Improved/Changed (%)
WikiHan	84 (8.13%)	32 (3.10%)	755 (73.09%)	162 (15.68%)	1033	72.41%
WikiHan-aug	88 (8.52%)	23 (2.23%)	791 (76.57%)	131 (12.68%)	1033	79.28%
Hóu	26 (16.15%)	15 (9.32%)	88 (54.66%)	32 (19.88%)	161	63.41%
Rom-phon	109 (6.21%)	61 (3.48%)	1198 (68.30%)	386 (22.01%)	1754	64.12%
Rom-orth	75 (4.29%)	23 (1.32%)	1367 (78.16%)	284 (16.24%)	1749	76.53%

Conclusion

Our reranked reconstruction system provides an elegant to replicate the synergy between reconstruction and reflex prediction in the comparative method. Our results serve as a vindication of the idea that designing reconstruction systems with the comparative method in mind can be more powerful than relying solely on sequence-tosequence techniques

- Keep linguists' methods in mind in computational linguistics!
- historical linguistics can lead to better results
- reconstruction research

Synergizing related tasks (reflex prediction, reconstruction, cognate prediction) in

Using reflex prediction in neural reconstruction is possibly a new framework for future

Paper: https://arxiv.org/abs/2403.18769 (or conference site) https://github.com/cmu-llab/reranked-reconstruction Code:

References

References

Bibliographical References

- V.S.D.S.Mahesh Akavarapu and Arnab Bhattacharya. 2023. Cognate transformer for automated phonological reconstruction and cognate reflex prediction. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6852–6862, Singapore. Association for Computational Linguistics.
- Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Information retrieval, 12:461–486.
- Raimo Anttila. 1989. Historical and Comparative Linguistics. John Benjamins Publishing.
- Aryaman Arora, Adam Farris, Samopriya Basu, and Suresh Kolichala. 2023. Jambu: A historical linguistic database for South Asian languages. In Proceedings of the 20th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 68–77, Toronto, Canada. Association for Computational Linguistics.
- Lukas Biewald. 2020. Experiment tracking with weights and biases.
- Timotheus A. Bodt and Johann-Mattis List. 2022.
- Reflex prediction: A case study of Western KhoBwa. Diachronica, 39(1):1-38.
- Alexandre Bouchard-Côté, David Hall, Thomas L. Griffiths, and Dan Klein. 2013. Automated reconstruction of ancient languages using probabilistic models of sound change. Proceedings of the National Academy of Sciences, 110(11):4224-4229.
- L. Campbell. 2021. Historical Linguistics: An Introduction. Edinburgh University Press.
- Chundra Cathcart and Taraka Rama. 2020. Disentangling dialects: A neural approach to IndoAryan historical phonology and subgrouping. In Proceedings of the 24th Conference on Computational Natural Language Learning, pages 620-630, Online. Association for Computational Linguistics.
- Kalvin Chang, Chenxuan Cui, Youngmin Kim, and David R. Mortensen. 2022. WikiHan: A New Comparative Dataset for Chinese Languages. In Proceedings of the 29th International Conference on Computational Linguistics, pages 3563-3569,

Gyeongju, Republic of Korea. International Committee on Computational Linguistics.

- Alina Maria Ciobanu and Liviu P. Dinu. 2018. Ab Initio: Autom Latin Proto-word Reconstruction. In Proceedings of the 27 International Conference on Computational Linguistics, pa 1604–1614, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
- Alina Maria Ciobanu, Liviu P. Dinu, and Laurentiu Zoicas. 2020 Automatic Reconstruction of Missing Romanian Cognates Unattested Latin Words. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 32 3231, Marseille, France. European Language Resources Association.
- Chenxuan Cui, Ying Chen, Qinxin Wang, and David R Morten 2022. Neural ProtoLanguage Reconstruction. Technical rep Carnegie Mellon University, Pittsburgh, PA.
- Stanton P. Durham and David Ellis Rogers. 1969. An Applicati of Computer Programming to the Reconstruction of a Prot Language. In International Conference on Computational Linguistics COLING 1969: Preprint No. 5, Sånga Säby, Swe
- Bradley Efron and Robert J Tibshirani. 1994. An introduction the bootstrap. CRC press.
- Clémentine Fourrier. 2022. Neural Approaches to Historical V Reconstruction. Ph.D. thesis, Université PSL (Paris Science Lettres).
- Andre He, Nicholas Tomlin, and Dan Klein, 2023.
- Neural Unsupervised Reconstruction of Protolanguage Word Forms. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1636–1649, Toronto, Canada. Association f Computational Linguistics.
- Bernhard Karlgren. 1974. Analytic Dictionary of Chinese and Japanese. Courier Corporation.
- Young Min Kim, Kalvin Chang, Chenxuan Cui, and David R. Mortensen, 2023, Transformed Protoform Reconstruction, Proceedings of the 61st Annual Meeting of the Association Computational Linguistics (Volume 2: Short Papers), page 24–38, Toronto, Canada. Association for Computational Linguistics.

atic 'th ages	Christo Kirov, Richard Sproat, and Alexander Gutkin. 2022. Mockingbird at the SIGTYP 2022 Shared Task: Two Types of Models for the Prediction of Cognate Reflexes. In Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP, pages 70–79, Seattle, Washington. Association for Computational Linguistics.
0. and	Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union.
226-	Johann-Mattis List. 2019. Beyond edit distances: Comparing linguistic reconstruction systems. Theoretical Linguistics, 45(3-4):247–258.
on to-	Johann-Mattis List, Robert Forkel, and Nathan Hill. 2022a. A New Framework for Fast Automated Phonological Reconstruction Using Trimmed Alignments and Sound Correspondence Patterns. In Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 89–96, Dublin, Ireland. Association for Computational Linguistics.
eden. to Word es &	Johann-Mattis List, Ekaterina Vylomova, Robert Forkel, Nathan Hill, and Ryan Cotterell. 2022b. The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes. In Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP, pages 52–62, Seattle, Washington. Association for Computational Linguistics.
l	Clayton Marr and David Mortensen. 2023. Largescale computerized forward reconstruction yields new perspectives in French diachronic phonology. Diachronica, 40(2):238–285.
g for	Clayton Marr and David R. Mortensen. 2020. Computerized Forward Reconstruction for Analysis in Diachronic Phonology, and Latin to French Reflex Prediction. In Proceedings of LT4HALA 2020 1st Workshop on Language Technologies for
Sino-	Historical and Ancient Languages, pages 28–36, Marseille, France. European Language Resources Association (ELRA).
. In n for s	Carlo Meloni, Shauli Ravfogel, and Yoav Goldberg. 2021. Ab Antiquo: Neural Proto-language Reconstruction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4460– 4473, Online. Association for Computational Linguistics.

- David R. Mortensen, Patrick Littell, Akash Bharadwaj, Kartik Goyal, Chris Dyer, and Lori Levin. 2016. PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3475–3484, Osaka, Japan. The COLING 2016 Organizing Committee.
- Remo Nitschke. 2021. Restoring the Sister: Reconstructing a Lexicon from Sister Languages using Neural Machine Translation. In Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, pages 122-130, Online. Association for Computational Linguistics.
- Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu, and Alexander Rives. 2021. MSA Transformer.
- Szemerényi, O. J. L. (1996). Introduction to Indo-European Linguistics. Oxford University Press UK.
- Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology and Distribution, pages 196–202. Springer.

Language Resource References

- Baxter, William H. 2014. Baxter-Sagart Old Chinese Reconstruction, Version 1.1 (20 September 2014).
- Chang, Kalvin and Cui, Chenxuan and Kim, Youngmin and Mortensen, David R. 2022. WikiHan: A New Comparative Dataset for Chinese Languages. International Committee on Computational Linguistics.
- Ciobanu, Alina Maria and Dinu, Liviu P. 2018. Ab Initio: Automatic Latin Proto-word Reconstruction. Association for Computational Linguistics.
- Cui, Chenxuan and Chen, Ying and Wang, Qinxin and Mortensen, David R. 2022. Neural ProtoLanguage Reconstruction.
- Hóu, Jīngyī. 2004. Xiàndài Hànyǔ Fāngyán Yīnkù 现代汉语方言音 库 [Phonological Database of Chinese Dialects].
- Meloni, Carlo and Ravfogel, Shauli and Goldberg, Yoav. 2021. Ab Antiquo: Neural Proto-language Reconstruction. Association for Computational Linguistics.

